Abstract Background Recently, accumulating evidences have revealed that microRNA-106 (miR-106) may serve as a non-invasive and cost-effective biomarker in gastric cancer (GC) detection. However, inconsistent results have prevented its application to clinical practice. Methods As a result of this, a comprehensive meta-analysis was conducted to evaluate the diagnostic performance of miR-106 alone and miR-106-related combination markers for GC detection. Meanwhile, an integrative bioinformatics analysis was performed to explore the function of miR-106 at the systems biology level. Results The results in our work showed that sensitivity of 0.71 (95% CI 0.65–0.76) and specificity of 0.82 (0.72–0.88), with the under area AUC (area under the curve) value of 0.80 (0.76–0.83) for miR-106 alone. Prospectively, miR-106-related combination markers improved the combined sensitivity, specificity and AUC, describing the discriminatory ability of 0.78 (0.65–0.87), 0.83 (0.77–0.89) and 0.88 (0.85–0.90) in the present analysis. Furthermore, targets of miR-106 were obtained and enriched by gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis, revealing their associations with the occurrence and development of GC. Hub genes and significant modules were identified from the protein–protein interaction networks constructed by miR-106 targets and found closely associated with the initiation and progression of GC again. Conclusions Our comprehensive and integrative analysis revealed that miR-106 may be suitable as a diagnostic biomarker for GC while microRNA combination biomarkers may provide a new alternative for clinical application. However, it is necessary to conduct large-scale population-based studies and biological experiments to further investigate the diagnostic value of miR-106. Keywords: Gastric cancer, Meta-analysis, System biological analysis, Diagnosis Background Gastric cancer (GC), a major public health challenge, is one of the leading causes of cancer death worldwide [[35]1]. There are limited detection methods for early diagnosis and few effective screening procedures in some countries. The most reliable program for diagnosis is mainly based on endoscopy and biopsy [[36]2]. However, this is invasive and inconvenient for patients to undergo. Consequently, most patients can only be diagnosed precisely in advanced stages when the clinical outcomes are poor [[37]3]. Therefore, there is a great need to explore new accurate and efficient, preferentially non-invasive, markers for early detection of GC. In recent time, accumulating evidences have suggested that microRNAs may serve as novel biomarkers for cancer detection. MicroRNAs are a class of small non-coding RNAs with intermediate posttranscriptional regulation of the target genes [[38]4]. A large number of studies have demonstrated that microRNAs play vital roles in a wide variety of physiological processes including cancer cell growth, differentiation, invasion, and metastasis [[39]5]. Moreover, a number of studies have indicated that circulating microRNAs have high degree of stability and tolerance even under unfavorable physiochemical conditions including extreme variations in pH, temperature and freeze–thaw cycles [[40]6]. It is also promising that microRNAs have outstanding stability in multiple clinical samples including plasma, serum, feces and tissue, which enables them to be detectable effortlessly [[41]7]. Given their critical involvement in the vital biological processes and perfect biomarker features mentioned above, microRNAs could be considered as good candidates for using as non-invasive markers, and the application of them as biomarkers for early detecting GC is viable [[42]8]. As one of the most representative microRNA biomarkers, microRNA-106 (miR-106) has been extensively studied by a great number of researches in several cancers. MiR-106 belongs to the miR-17 family, one of the most common studied onco-microRNA groups, which includes miRs-17, -20a, -20b, -93, -106a and -106b. MiR-106a is a member of the miR-106a-92 cluster located on chromosome Xq26.2 while miR-106b is located at 7q21 [[43]9, [44]10]. There have been several studies indicating that both of investigated miR-106 could be expressed in the same individuals of gastric tumour tissues. Several studies have previously reported that circulating miR-106 could specifically serve as a pivotal and promising biomarker for GC [[45]11]. Nevertheless, the suitability of circulating miR-106 in early detection and diagnosis of GC remains inconsistent due to different sample sizes, disease statuses, sample sources, detection methods, and other uncontrolled factors. Moreover, the potential molecular mechanism of miR-106 is still poorly understood for the present insufficient knowledge. In the present study, a comprehensive meta-analysis was performed to obtain a better understanding of the clinical feasibility of miR-106 as promising biomarker for early detection and diagnosis of GC. By focusing not only on a single miR-106 marker, we explored whether combination biomarkers based on miR-106 are more effective than individual miR-106. Furthermore, an integrative bioinformatics analysis was carried out to evaluate the functions of miR-106 at the systems biology level. Methods Literature search strategy A comprehensive computerized literature search for articles (up to December 27, 2017) was carried out based on several electronic databases including PubMed, EMbase, Web of Science and the Cochrane Library using the following search terms: (“cancer” OR “tumor’’ OR “carcinoma” OR “neoplasm”) AND (“gastric” OR “stomach’’ OR “gastrointestinal’’ OR “digestive” OR “GC”) AND (“microRNA-106” OR “miR-106” OR “miR-106a” OR “miR-106b”). In addition, the references of