Abstract Obesity and type 2 diabetes are increasing in prevalence around the world, and there is a clear need for new and effective strategies to promote metabolic health. A low protein (LP) diet improves metabolic health in both rodents and humans, but the mechanisms that underlie this effect remain unknown. The gut microbiome has recently emerged as a potent regulator of host metabolism and the response to diet. Here, we demonstrate that a LP diet significantly alters the taxonomic composition of the gut microbiome at the phylum level, altering the relative abundance of Actinobacteria, Bacteroidetes, and Firmicutes. Transcriptional profiling suggested that any impact of the microbiome on liver metabolism was likely independent of the microbiome-farnesoid X receptor (FXR) axis. We therefore tested the ability of a LP diet to improve metabolic health following antibiotic ablation of the gut microbiota. We found that a LP diet promotes leanness, increases energy expenditure, and improves glycemic control equally well in mice treated with antibiotics as in untreated control animals. Our results demonstrate that the beneficial effects of a LP diet on glucose homeostasis, energy balance, and body composition are unlikely to be mediated by diet-induced changes in the taxonomic composition of the gut microbiome. Introduction Around the world, approximately 425 million people have diabetes, and that number is expected to grow by 50% over the next three decades^[44]1. Beyond the direct effects of diabetes on mortality, its impact is amplified by its association with other causes of morbidity and mortality, such as cardiovascular disease^[45]2, cancer^[46]3, and Alzheimer’s disease^[47]4. Type 2 diabetes, which is associated with diet and obesity, accounts for the vast majority of diabetes cases, and the epidemic rise in obesity has fueled the development of this health crisis. Dietary interventions to control or prevent type 2 diabetes could be highly effective and affordable, but long-term reduced calorie diets have not proven to be sustainable for most people. Diets that alter the level of specific macronutrients without a decrease in caloric consumption may be more sustainable^[48]5; one variety of such diets are high protein, low carbohydrate diets such as the Atkins diet, which promise rapid weight loss without restricting calories^[49]6. Some clinical trials have observed that high protein diets can promote weight loss^[50]7–[51]9, at least in highly compliant subjects^[52]10. However, long-term prospective cohort studies have observed that high protein consumption is associated with increased insulin resistance, diabetes, cancer, and cardiovascular disease, and an overall increase in mortality^[53]11–[54]13. In agreement with these findings, recent long-term studies in Drosophila and mice, as well as a short-term randomized control trial conducted in humans, find that low protein (LP) diets are associated with improvements in health, survival, and insulin sensitivity^[55]13–[56]18. Reducing dietary protein largely blocks the effect of a high-fat diet on glucose tolerance^[57]18, and we recently showed that in a mouse model of pre-existing diet-induced obesity, reducing dietary protein rapidly restored metabolic health, dramatically reduced adiposity, and improved glucose tolerance and insulin sensitivity^[58]19. While some of these phenotypes are mediated in part by the insulin-sensitizing and energy expenditure promoting hormone fibroblast growth factor 21 (FGF21), it is likely that other mechanisms are also involved^[59]18–[60]24. Over the last decade, numerous studies have found that the composition of the gut microbiome plays an important role in regulating the metabolic health of both rodents and humans^[61]25,[62]26 by mediating the response to drugs, diet, and aging^[63]27–[64]33. One major pathway by which the gut microbiota regulates glycemic control is by altering bile acid metabolism and activating the farnesoid X receptor (FXR) – FGF15 signaling axis^[65]34,[66]35. Recent work suggests that at least in rodents, the major dietary factors that regulate the taxonomic composition of the gut microbiome are protein and carbohydrate intake^[67]36. However, the source of dietary protein – e.g. red meat, white meat, dairy, or plant protein – also has an important effect on the taxonomic composition of the gut microbiome^[68]37. It remains unknown if the effect of a LP diet on the composition and function of the gut microbiome plays a role in its beneficial metabolic effects. In this study, we determined that an amino acid defined LP diet, which has similar metabolic benefits to a LP diet containing natural protein^[69]22, alters the taxonomic and functional composition of the gut microbiome. We found that a LP diet significantly alters the hepatic transcriptome, possibly reducing FXR-FGF15 signaling. Finally, we found that ablation of the gut microbiome with antibiotics does not significantly alter the metabolic response to a LP diet. Our data suggests that while dietary protein plays an important role in shaping the taxonomic and functional composition of the gut microbiome, these diet-induced changes do not mediate the beneficial metabolic effects of a LP diet in young, lean mice. Materials and Methods Animals and Treatments For all experiments, male C57BL/6J mice were purchased from The Jackson Laboratory and group housed in static microisolator cages in a specific-pathogen free animal facility. For experiments investigating the composition of the gut microbiome and transcriptional profiling of the liver, mice were purchased at 8 weeks of age, and diet changes occurred at 9 weeks of age. Approximately 4 months later, cecal contents and livers were collected from mice sacrificed in the morning following an overnight, approximately ~16 hr fast. For experiments in which the gut microbiome was ablated with antibiotics, mice were purchased at 5 weeks of age; starting at 6 weeks of age, mice were randomized at the cage level to receive water or water containing antibiotics as described below. Diet changes occurred at 9 weeks of age, and antibiotic treatment was continued for the duration of the experiment. All procedures involving animals were approved by the Institutional Animal Care and Use Committee of the William S. Middleton Memorial Veterans Hospital (Madison, WI), and all experiments were performed in accordance with relevant guidelines and regulations. Diets Prior to 9 weeks of age, animals were fed the standard facility chow (Purina 5001; Purina Mills, Richmond, IN, USA). Amino acid defined animal diets (non-irradiated) were obtained from Envigo (formerly Harlan Laboratories). At 9 weeks of age, animals were switched to either a Control amino acid defined diet (TD.140711; 22.0% of calories derived from amino acids; 59.4% from carbohydrate; 18.6% from fat) or a Low Protein amino acid defined diet (TD.140712; 7.1% of calories derived from amino acids; 74.4% from carbohydrates; 18.5% from fat). The complete composition of these diets has been previously described^[70]22. Antibiotic Treatment The gut microbiome was ablated using an antibiotic treatment protocol previously described to efficiently ablate the gut microbiome of mice^[71]38. Briefly, mice were provided with free access to autoclaved water containing 1 g/L ampicillin, 500 mg/L vancomycin, and 1 g/L neomycin; however, in contrast to the protocol followed in^[72]38, aspartame was omitted due to its negative effects on glucose homeostasis and body composition in mice^[73]39. The mice and the water bottles were weighed and changed biweekly to monitor water intake. Control mice were provided with autoclaved water not containing antibiotics. To verify the efficacy of the antibiotic treatment, fecal pellets were collected and total DNA was extracted using a modification of a previously described protocol^[74]40. Briefly, fecal pellets (~30–50 mg) were resuspended in a solution containing 500 µL of extraction buffer [200 mM Tris (pH 8.0), 200 mM NaCl, 20 mM EDTA], 210 µL of 20% SDS, 500 µL phenol:chloroform:isoamyl alcohol (pH 7.9, 25:24:1) and 500 µL of Fisher Scientific 1.4 mm diameter ceramic beads (Cat# 15340159). Following mechanical disruption using a FastPrep 24 (M.P. Biomedicals), the solution was centrifuged at 8,000 rpm at 4 °C for three minutes. The aqueous layer was then sequentially precipitated using sodium acetate/isopropanol and sodium acetate/ethanol. DNA samples were then quantified using a Nanodrop 2000c. Mouse metabolic phenotyping Glucose and alanine tolerance tests (GTT and ATT) were performed by fasting the mice overnight for 16 hr and then injecting either glucose (1 g/kg) or alanine (2 g/kg) intraperitoneally as previously described^[75]41,[76]42. Glucose measurements were taken using a Bayer Contour blood glucose meter and test strips. Mouse body composition was determined using an EchoMRI 3-in-1 Body Composition Analyzer. For assay of multiple metabolic parameters (O[2], CO[2], food consumption) and activity tracking, mice were acclimated to housing in a Columbus Instruments Oxymax/CLAMS metabolic chamber system for ~24 hr, and data from a continuous 24-hr period was then recorded and analyzed. Gut microbial community DNA preparation Approximately 20–50 mg of cecal matter was added to an autoclaved Sarstedt 2 m micro screw-cap tube (Ref# 72.693.005) containing approximately 500 μL of BioSpec Zirconia/Silica beads (Cat# 11079101z) and one large Bio Spec bead (Cat# 11079132ss). To this, 500 μL of 200 mM Tris-HCl, pH 8.0/200 mM NaCl/20 mM EDTA was added, as well as 210 μL 20% SDS. 500 μL of Phenol/Chloroform/isoamyl alcohol, pH 7.9, 25:24:1, was added before bead beating using a FastPrep 24 (M.P. Biomedicals) until sample was fully homogenized in solution. Tubes were centrifuged at 8,000 rpm at 4 °C for three minutes. The aqueous layer, approximately 500 µL, was transferred to a new microcentrifuge tube (Axygen). 60 μL of 3 M NaAcetate was added, then 600 μL of isopropanol, then inverted to mix. The samples were placed on ice for one hour before centrifuging at 13,000 rpm at 4 °C for 20 minutes. Samples were decanted, and pellet was rinsed with 200 μL of 100% EtOH, then decanted and briefly dried. The pellet was dissolved in 100–200 μL of TE buffer. 100 μL of DNA was cleaned using the Macherey-Nagel PCR Clean-up kit, using 2 NT3 washes and eluting with 50–100 μL of elution buffer. Construction and Sequencing of v3-v4 16S Metagenomic libraries Purified genomic DNA was submitted to the University of Wisconsin-Madison Biotechnology Center. DNA concentration was verified fluorometrically using either the Qubit® dsDNA HS Assay Kit or Quant-iT™ PicoGreen® dsDNA Assay Kit (ThermoFisher Scientific, Waltham, MA, USA). Samples were prepared in a similar process to the one described in Illumina’s 16 S Metagenomic Sequencing Library Preparation Protocol, Part # 15044223 Rev. B (Illumina Inc., San Diego, California, USA) with the following modifications: The 16 S rRNA gene V3/V4 variable region was amplified with fusion primers (forward primer 341 f: 5′-ACACTCTTTCCCTACACGACGCTCTTCCGATCT(N)[3/6]CCTACGGGNGGCWGCAG-3′, reverse primer 805r: 5′-GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT(N)[3/6]GACTACHVGGGTATCTAATCC-3′). Region specific primers were previously described (^[77]43; underlined sequences above), and were modified to add 3–6 random nucleotides ((N)[3/6]) and Illumina adapter overhang nucleotide sequences 5′ of the gene‐specific sequences. Following initial amplification, reactions were cleaned using a 0.7x volume of AxyPrep Mag PCR clean-up beads (Axygen Biosciences, Union City, CA). In a subsequent PCR, Illumina dual indexes and Sequencing adapters were added using the following primers (Forward primer: 5′-AATGATACGGCGACCACCGAGATCTACAC[55555555]ACACTCTTTCCCTACACGACGCTCTTCCG ATCT-3′, Reverse Primer: 5′-CAAGCAGAAGACGGCATACGAGAT[77777777]GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT -3′, where bracketed sequences are equivalent to the Illumina Dual Index adapters D501-D508 and D701-D712,N716,N718-N724,N726-N729). Following PCR, reactions were cleaned using a 0.7x volume of AxyPrep Mag PCR clean-up beads (Axygen Biosciences). Quality and quantity of the finished libraries were assessed using an Agilent DNA 1000 kit (Agilent Technologies, Santa Clara, CA) and Qubit® dsDNA HS Assay Kit (ThermoFisher Scientific), respectively. Libraries were pooled in an equimolar fashion and appropriately diluted prior to sequencing. Paired end, 300 bp sequencing was performed using the Illumina MiSeq Sequencer and a MiSeq. 600 bp (v3) sequencing cartridge. Images were analyzed using the standard Illumina Pipeline, version 1.8.2. OTU assignments and diversity plots were created using QIIME analysis pipeline^[78]44. Microbiota analysis using QIIME Microbiota analysis to obtain OTU assignments and diversity plots were performed using Quantitative Insights Into Microbial Ecology (QIIME)^[79]44 version 1.9.1. Illumina sequencing reads were adapter and quality trimmed using the Skewer^[80]45 trimming program to remove low quality (