Abstract Aims To identify the common and specific molecular mechanisms of three well-defined subtypes of endometriosis (EMs): ovarian endometriosis (OE), peritoneal endometriosis (PE), and deep infiltrating endometriosis (DIE). Methods Four microarray datasets: [32]GSE7305 and [33]GSE7307 for OE, [34]E-MTAB-694 for PE, and [35]GSE25628 for DIE were downloaded from public databases and conducted to compare ectopic lesions (EC) with eutopic endometrium (EU) from EMs patients. Differentially expressed genes (DEGs) identified by limma package were divided into two parts: common DEGs among three subtypes and specific DEGs in each subtype, both of which were subsequently performed with the Kyoto Encyclopedia of Genes (KEGG) pathway enrichment analysis. The protein-protein interaction (PPI) network was constructed by common DEGs and five hub genes were screened out from the PPI network. Besides, these five hub genes together with selected interested pathway-related genes were further validated in an independent OE RNA-sequencing dataset [36]GSE105764. Results A total of 54 EC samples from three EMs subtypes (OE, PE, DIE) and 58 EU samples were analyzed, from which we obtained 148 common DEGs among three subtypes, and 729 specific DEGs in OE, 777 specific DEGs in PE and 36 specific DEGs in DIE. The most enriched pathway of 148 shared DEGs was arachidonic acid (AA) metabolism, in which most genes were up-regulated in EC, indicating inflammation was the most common pathogenesis of three subtypes. Besides, five hub genes AURKB, RRM2, DTL, CCNB1, CCNB2 identified from the PPI network constructed by 148 shared DEGs were all associated with cell cycle and mitosis, and down-regulated in EC, suggesting a slow and controlled proliferation in ectopic lesions. The KEGG pathway analysis of specific DEGs in each subtype revealed that abnormal ovarian steroidogenesis was a prominent feature in OE; OE and DIE seems to be at more risk of malignant development since both of their specific DEGs were enriched in the pathways in cancer, though enriched genes were different, while PE tended to be more associated with dysregulated peritoneal immune and inflammatory microenvironment. Conclusion By integrated bioinformatic analysis, we explored common and specific molecular signatures among different subtypes of endometriosis: activated arachidonic acid (AA) metabolism-related inflammatory process and a slow and controlled proliferation in ectopic lesions were common features in OE, PE and DIE; OE and DIE seemed to be at more risk of malignant development while PE tended to be more associated with dysregulated peritoneal immune and inflammatory microenvironment, all of which could deepen our perception of endometriosis. Keywords: Bioinformatic analysis, Differentially expressed genes, Microarray, Endometriosis, Subtype Introduction Endometriosis (EMs), characterized by the growth of endometrium-type tissue outside the uterine cavity, is a common and usually chronic (long-term) inflammatory disorder, affecting 5–10% of women in their reproductive years ([37]Zondervan et al., 2018). EMs is also considered as a phenotypically heterogeneous condition not only due to diverse symptoms, such as infertility, pelvic pain or dysmenorrhea but also different lesion locations, predominantly but not exclusively, in the pelvic compartment ([38]Vercellini et al., 2014). Since the classic retrograde menstruation hypothesis ([39]Sampson, 1927) that during menstrual uterine contractions, endometrial fragments via trans-tubal reflux flowed to implant onto the peritoneum and abdominal organs could not explain the fact that 76–90% of women experienced retrograde menstruation but not all of these women suffered from EMs ([40]Blumenkrantz et al., 1981), there must exist other mechanisms facilitating the development of EMs. On the other hand, as early as 1997, Nisolle and Donnez provided morphological and histochemical evidence indicating that three main subtypes of endometriosis: ovarian endometriosis (OE), peritoneal endometriosis (PE), and deep infiltrating endometriosis (DIE), should be considered different entities, though they shared the histologic features of endometrial glands and stroma ([41]Nisolle & Donnez, 1997). Thus, investigating the common and specific mechanisms among different EMs subtypes may provide new insight into the pathogenesis of endometriosis. However, due to the limited information as well as samples available from single cohorts, few integrative analyses of EMs subtypes were conducted. Therefore, in this article, we analyzed the microarray datasets [42]GSE7305 and [43]GSE7307 of OE, [44]E-MTAB-694 of PE, and [45]GSE25628 of DIE to obtain common differentially expressed genes (DEGs) among three EMs subtypes along with specific DEGs in each subtype by comparing ectopic lesions (EC) with eutopic endometrium (EU) from EMs patients. Then, the Kyoto Encyclopedia of Genes (KEGG), protein-protein interaction (PPI) network and validation analysis were performed to analyze these common and specific DEGs ([46]Fig. 1). Overall, all results were combined to promote further understanding of different EMs subtypes and reveal a more thorough landscape of EMs. Figure 1. The flowchart of integrative analysis of microarray datasets from three different endometriosis subtypes. [47]Figure 1 [48]Open in a new tab Abbreviations: OE, ovarian endometriosis; PE, peritoneal endometriosis; DIE, deep infiltering endometriosis; DEGs, differentially expressed genes; KEGG, KyotoEncyclopedia of Genes; PPI, protein-protein interaction. Materials & Methods Data resources The search for endometriosis-related microarray datasets was conducted in two public databases: Gene Expression Omnibus ([49]https://www.ncbi.nlm.nih.gov/geo/) and Array-Express ([50]https://www.ebi.ac.uk/ar-rayexpress/). The keywords: ‘endometriosis’, ‘endometrium’, ‘tissue’, ‘homo sapiens’ or ‘human’ respectively with ‘ovarian’, ‘peritoneal’, ‘DIE’, ‘deep’ or ‘infiltrating’ were employed to mine the datasets for three EMs subtypes. Additionally, all selected datasets were based on Affymetrix platforms to reduce the ‘platform effect’ due to different probe designs among different companies. Finally, four datasets were included: [51]GSE7305 and [52]GSE7307 for OE, [53]E-MTAB-694 for PE, and [54]GSE25628 for DIE ([55]Table 1), all of which contained at least 8 samples for both ectopic lesions (EC) and eutopic endometrium (EU) from the EMs patients. A total of 54 EC samples from these datasets of different EMs subtypes and 58 EU samples were included. Table 1. Basic information of the microarray datasets of three different EMs subtypes. Subtype Accession Platform No. of probes No. of samples (EU/EC, whether paired) Tissue stage References