Abstract Background The freshwater snail Oncomelania hupensis is the obligate intermediate host for Schistosoma japonicum in China. Transcriptomic examination of snail–schistosome interactions can provide valuable information of host response at physiological and immune levels. Methods To investigate S. japonicum-induced changes in O. hupensis gene expression, we utilized high-throughput sequencing to identify transcripts that were differentially expressed between infected snails and their uninfected controls at two key time-point, Day 7 and Day 30 after challenge. Time-series transcriptomic profiles were analyzed using R package DESeq 2, followed by GO, KEGG and (weighted gene correlation network analysis) WGCNA analysis to elucidate and identify important molecular mechanism, and subsequently understand host–parasite relationship. The identified unigenes was verified by bioinformatics and real-time PCR. Possible adaptation molecular mechanisms of O. hupensis to S. japonicum challenge were proposed. Results Transcriptomic analyses of O. hupensis by S. japonicum invasion yielded billion reads including 92,144 annotated transcripts. Over 5000 differentially expressed genes (DEGs) were identified by pairwise comparisons of infected libraries from two time points to uninfected libraries in O. hupensis. In total, 6032 gene ontology terms and 149 KEGG pathways were enriched. After the snails were infected with S. japonicum on Day 7 and Day 30, DEGs were shown to be involved in many key processes associated with biological regulation and innate immunity pathways. Gene expression patterns differed after exposure to S. japonicum. Using WGCNA, 16 modules were identified. Module-trait analysis identified that a module involved in RNA binding, ribosome, translation, mRNA processing, and structural constituent of ribosome were strongly associated with S. japonicum invasion. Many of the genes from enriched KEGG pathways were involved in lysosome, spliceosome and ribosome, indicating that S. japonicum invasion may activate the regulation of ribosomes and immune response to infection in O. hupensis. Conclusions Our analysis provided a temporally dynamic gene expression pattern of O. hupensis by S. japonicum invasion. The identification of gene candidates serves as a foundation for future investigations of S. japonicum infection. Additionally, major DEGs expression patterns and putative key regulatory pathways would provide useful information to construct gene regulatory networks between host-parasite crosstalk. Keywords: Oncomelania hupensis, Schistosoma japonicum, Invasion, Transcriptome Introduction Schistosomiasis is a zoonotic parasitic disease estimated to affect over 250 million people worldwide [[39]1]. It is transmitted by snails infected with worms of the trematode genus Schistosoma. Oncomelania hupensis (Gastropoda: Rissooidea), mainly distributed in China’s Yangtze river basin and its south, is the only intermediate host of Schistosoma japonicum, which plays a key role in the transmission of schistosomiasis in China [[40]2, [41]3]. The number of Schistosomiasis patients and the burden of the disease have dramatically reduced since the establishment of People’s Republic of China (P.R.C), together with the national schistosomiasis control strategy shift from the morbidity control strategy to an integrated strategy in 2004 [[42]4–[43]6]. However, the disease remains endemic in some regions and contributes to a major public health concern in China. Moreover, there are still O. hupensis snails distributed in the ecologically complicated environments, such as lakeshore, marshland and mountainous areas. The breeding and spread of O. hupensis is the hotbed for the transmission and retransmission of Schistosomiasis, even after elimination. The life cycle of schistosomiasis is complicated. Its life cycle necessitates the presence of an intermediate host-a fresh water mollusk [[44]7]. After released from the egg, the miracidium, the first larval stage in the life cycle, begin to search for its specific intermediate host. It penetrates the snail, subsequently multiply asexually into multicellular sporocysts and later into cercarial larvae [[45]8, [46]9]. The S. japonicum miracidium develop into sporocysts larva in the O. hupensis within a week. The glands, ganglia, eye spots and apical papilla get degenerated in this stage, except the ciliated epidermis replaced by neodermis (tegument). After about 30 days infected snails release free swimming cercariae in response to sunlight. These can penetrate the skin of the mammalian host within 12–24 h and finally invade the definite host [[47]10, [48]11]. In addition to the parasite itself, it is well-known that the infection in O. hupensis depends on many factors, such as parasite-snail compatibility, environmental aspects, individual snail defense capacity and specificity, and so on. Thus, the schistosome-snail interaction is a key area of research of biomedical significance. With the help of tremendous breakthroughs in molecular research, the application of next-generation sequencing (NGS) technology in genomics, transcriptomics, epigenomics and metagenomics have been performed to drive forward our understanding of many processes and potential regulatory mechanisms in schistosomiasis involved both the parasite and host. The genome of Biomphalaria glabrata published in May 2017 [[49]12], which has dramatically improved the efficiency of gene discovery in snail. In a recent study Wang et al. tried to determine modification of neuropeptides in the snail B. glabrata ganglia nervous system before and after infection with Schistosoma mansoni miracidia [[50]13]. They found that the neuropeptides and precursor proteins, particularly those involved in snail reproduction were heavily down regulated and less abundant in prepatent snails compared to non-infected snails. For O. hupensis, transcriptomic studies by RNA-seq have been performed after molluscicide treatment. Many genes involved in key processes associated with biological regulation and innate immunity have been identified, which would benefit for elucidating the molluscicidal mechanism [[51]14]. Another study by comparing the differences in gene expression between the hilly and marshland snails revealed that there is a potential relationship between expression profiling and ecological adaptation of the snail that may have implications for schistosomiasis control in future [[52]15]. Our team reported preliminary analysis of raw data of O. hupensis before and after S. japonicum invasion, and 178,436,865 clean reads with a Q20 percentage of 87.90% were obtained [[53]16]. However, we failed to conduct in-depth analysis due to sequence contamination of S. japonicum. Nevertheless, the key molecular mechanisms involved in the parasite–snail interaction, the subsequent larva development, and the main molecular events occurring during infection establishment in the intermediate host have not been investigated so far. Here, we provide and further analyze global view of the transcriptomes at two key time point to determine which physiological changes and immune responses occur in the snail after infections with S. japonicum miracidia. Understanding the pathogen–host interactions and critical molecular events on these time nodes during infection establishment in prepatent snails will provide new insights for the development of novel markers of detecting infected snails and anti-schistosome strategies. Methods Sample collection and preparation Oncomelania hupensis specimens were originally collected from Guichi district, Chizhou city, Anhui province during April 2008 to February 2012 (Fig. [54]1a). The collected samples were reared in the insectary for a week, and confirmed by cercaria shedding test. After excluding a natural infection, all snails were used for subsequent investigations. The freshly hatched miracidia were harvested from the liver of New Zealand white rabbits as describe in [[55]17], then pooled and placed in a container with de-chlorinated water. Subsequently, snails were separately placed in a 24-well culture plate of de-chlorinated water, and then added 10 miracidia to each well, resulting in a snail to miracidia ratio of ~1:10. Snails were illuminated under light for 6 –8 h at 25 − 30 °C conditions. Snails were then removed and placed into 20 × 30 cm trays and cultured. De-chlorinated water was added daily to the culture trays to keep the moisture at a relative humidity of 85%. Throughout the experiment, snails were checked daily and dead ones were removed with forceps and counted. Finally, 10 snails were collected at days 7 and 30 post-infection. Infection was assessed by compression of tissues between two glass plates after removing of shell and examined under microscope to confirm the presence of cercariae or sporocysts (Fig. [56]1b). The snail soft tissues were pooled (at least three replicates), and then immediately flash frozen and stored for further analysis. Fig. 1. [57]Fig. 1 [58]Open in a new tab a Geographical location of the sampling site in Guichi district in Anhui province; b overall workflow for collection of non-infected and infected O. hupensis. Control group is Group N(naïve stage), while infection group include Group A (initial infection stage, 7 dpi) and Group C (late infection stage, 30 dpi) Transcriptome preprocessing and submission Briefly, total RNAs were extracted separately from three different groups, designated as N (N1–N3, naïve stage), A (A1–A3, initial infection stage, 7 dpi) and C (C1–C3, late infection stage, 30 dpi), respectively, using TRIzol reagent (Invitrogen, USA) according to the manufacturer’s protocol. Genomic DNA was removed by treating RNA samples with DNase I (Fermentas) prior to cDNA synthesis. RNA quantification and quality were measured by the Nanodrop ND-1000 spectrophotometer (Nanodrop Technologies, Wilmington, DE), combining with Agilent 2100 Bioanalyzer and denaturing gel electrophoresis. Total RNA (3 µg) from each group was prepared according to the Illumina protocol as described previously. In brief, Magnetic beads with oligo-dT were used to combine the poly-A of the mRNA for purifying the mRNA from the total RNA. Subsequently, poly (A) mRNA was chopped into short fragments using divalent cations under elevated temperature. The fragments were used to synthesize first-strand cDNA with random primers, and first-strand cDNA was transformed into double-strand cDNA by using RNase H and DNA polymerase I according to the manufacturer’s instructions. Short fragments of desirable lengths (200–300 bp) were purified using the QIAquick PCR Extraction Kit (Qiagen, Valencia, CA, USA), which was also used for continued end repair and ‘A’ base addition. The end-repaired DNA fragments were ligated with sequencing adapters through A and T complementary base pairing. AMPure XP beads (Beckman Coulter, Shanghai, China) were used to remove unsuitable fragments. The multiplexed cDNA libraries were checked using PicoGreen (Quantifluor™-STfluorometerE6090, Promega, CA, USA) and fluorospectrophotometry (Quant-iT59PicoGreen dsDNA Assay Kit; Invitrogen, P7589) and quantified with Agilent 2100 (Agilent 2100 Bioanalyzer, Agilent, 2100; Agilent High Sensitivity DNA Kit, Agilent, 5067–4626). The sequencing library was gradually diluted and quantified to 4–5 pM and sequenced using the Illumina NextSeq™ 500 platform at Shanghai Personal Biotechnology Co., Ltd. The transcriptome datasets are available from the NCBI Sequence Read Archive (SRA) under accession number SRR9598637–SRR9598645. De novo transcriptome assembly and functional annotation Clean reads were obtained from raw data by removing adaptor sequences, low quality reads (Q < 20) and reads containing adapter or poly-N with the help of cutadapt [[59]18] and fqtrim [[60]19]. De novo assembly of clean data was assembled based on clean reads using Trinity [[61]20] to generate transcripts. For further analysis, the assembled sequences were searched against the NCBI non-redundant nucleotide database (Nt), non-redundant protein database (Nr) and Swiss-Prot database with an E-value < 10^−5. For contigs annotated as the same references, we