Abstract While oxidative stress has been linked to multiple sclerosis (MS), the role of superoxide-producing phagocyte NADPH oxidase (Nox2) in central nervous system (CNS) pathogenesis remains unclear. This study investigates the impact of Nox2 gene ablation on pro- and anti-inflammatory cytokine and chemokine production in a mouse experimental autoimmune encephalomyelitis (EAE) model. Nox2 deficiency attenuates EAE-induced neural damage and reduces disease severity, pathogenic immune cells infiltration, demyelination, and oxidative stress in the CNS. The number of autoreactive T cells, myeloid cells, and activated microglia, as well as the production of cytokines and chemokines, including GM-CSF, IFNγ, TNFα, IL-6, IL-10, IL-17A, CCL2, CCL5, and CXCL10, were much lower in the Nox2^−/− CNS tissues but remained unaltered in the peripheral lymphoid organs. RNA-seq profiling of microglial transcriptome identified a panel of Nox2 dependent proinflammatory genes: Pf4, Tnfrsf9, Tnfsf12, Tnfsf13, Ccl7, Cxcl3, and Cxcl9. Furthermore, gene ontology and pathway enrichment analyses revealed that microglial Nox2 plays a regulatory role in multiple pathways known to be important for MS/EAE pathogenesis, including STAT3, glutathione, leukotriene biosynthesis, IL-8, HMGB1, NRF2, systemic lupus erythematosus in B cells, and T cell exhaustion signaling. Taken together, our results provide new insights into the critical functions performed by microglial Nox2 during the EAE pathogenesis, suggesting that Nox2 inhibition may represent an important therapeutic target for MS. Keywords: NADPH oxidase, reactive oxygen species, experimental autoimmune encephalomyelitis, chemotaxis, microglia Introduction Multiple sclerosis (MS) is one of the major neurodegenerative diseases. Many drugs are available for MS therapy, but these treatments often do not effectively halt disease progression. Thus, the identification of disease-modifying drugs that can stop MS progression are urgently needed ([39]1). Mouse experimental autoimmune encephalomyelitis (EAE) is widely used to model human MS ([40]2). The key features of the mouse EAE model that somewhat recapitulate the several immunopathological and neuropathological features of human MS include inflammation, demyelination, axonal loss, and gliosis ([41]3). While the roles performed by immune cells related to autoimmune functions [e.g. autoreactive CD4^+ T cells (T[H]1 and T[H]17 cells), CD8^+ T cells, memory B cells, and myeloid cells (monocytes, dendritic cells)] are well known ([42]4), the influence of microglia on MS/EAE remains unclear. Microglia are a major source of pro-inflammatory cytokines (e.g. TNFα, IL-1β, IL-6, IL-17, and IL-23) and chemokines (e.g. CCL2, CCL3, CCL4, CCL5, CCL12, and CCL22) that may worsen MS/EAE ([43]5). Therefore, deregulated microglia can aggravate devastating demyelination and neuronal damage in the brains of MS patients ([44]6). Microglial nodules, characterized by an absence of leukocyte infiltration, astrogliosis, or demyelination, in normal-appearing white matter of MS patient brains are linked to the earliest stage of MS lesion formation. Known as “pre-active lesions,” these clusters of activated microglia are believed to eventually develop into pronounced and active demyelinating MS lesions ([45]7). Kinetics studies from EAE mouse models suggest that microglia are immediately activated by MOG treatment and represent the earliest cell population to take up myelin antigens ([46]8). Subsequently, through major histocompatibility complex (MHC) molecules, these microglia re-stimulate and recruit autoreactive T cells into the central nervous system (CNS) ([47]9). Microglia-generated superoxide and its immune cell-produced metabolites play a critical role in the progression of various neurodegenerative disorders, including MS/EAE ([48]10, [49]11). Nicotinamideadenine-dinucleotide phosphate (NADPH) oxidase (Nox2) is a key superoxide-producing enzyme that forms reactive oxygen species (ROS) ([50]12). Nox2 is highly expressed in professional phagocytes (e.g. neutrophils, monocytes, macrophages, microglia, and dendritic cells). Nox2 is critical for host defense because it produces reactive oxidants, activates granular proteases, and assists in the generation of neutrophil extracellular traps. Nox2 is the catalytic, membrane-bound subunit of NADPH oxidase. It is composed of an N-terminal transmembrane domain that interacts with two heme groups and a C-terminal domain that associates with both flavin adenine dinucleotide and NADPH ([51]13). Nox2 remains inactive until it interacts with the membrane-anchored p22phox, resulting in the formation of the flavocytochrome b558 heterodimer ([52]14). After activation by various infectious agents, the regulatory subunits p67phox, p47phox, p40phox, and the small Rho GTPase Rac are recruited to the complex to form NADPH oxidase on the plasma or phagosomal membrane ([53]15). Here, Nox2 converts molecular oxygen into superoxide anions, which can be further transformed into antimicrobial metabolites (e.g. hydroxyl anion and hydrogen peroxide) ([54]16). Thus, Nox2 is a major contributor to oxidative stress and subsequent neurotoxicity in the CNS ([55]17). However, the mechanisms underlying Nox2-dependent MS pathogenesis remain unknown. Here, we sought to address this gap in our understanding of MS/EAE pathogenesis by investigating the contribution of Nox2 activity to myelin oligodendrocyte glycoprotein (MOG)-elicited EAE. In this study, we provide strong evidence indicating that microglia play a critical role in the induction of EAE pathologies. Nox2-generated superoxide and excessive oxidative stress as well as Nox2-mediated chemotaxis in microglia are both essential mediators to cause advanced demyelination of oligodendrocytes and damage of neurons. Furthermore, our data also suggests Nox2 is prime target for developing therapy for MS/EAE. Materials and Methods Animals C57BL/6 gp91^phox−/− [Nox2 KO mice (gp91^Cybbtm1Din/J)] mice ([56]18) were kindly provided by Dr. Chi-Chang Shieh (Institute of Clinical Medicine, National Cheng Kung University College of Medicine, Tainan city, Taiwan). Control mice, C57BL/6 gp91^phox+/+ (wildtype mice), were purchased from National Laboratory Animal Center in Taipei City, Taiwan. Both mouse strains were subsequently bred at the Animal Center of the National Defense Medical Center under pathogen-free conditions. Mice were treated in accordance with the Institutional Animal Care and Use Committee of the National Defense Medical Center guide for experiments and approved by the committee in the same office (IACUC: 19-058). Chronic EAE Induction and Disease Score Mice were given a subcutaneous injection of 100 μg of MOG[35–55] emulsified with complete Freund’s adjuvant (MOG/CFA) which contained 0.8 mg of heat-inactivated Mycobacterium tuberculosis (H37RA; Difco Laboratories) in their flanks. Each animal also received pertussis toxin ([57]19) (500 ng i.p.; List Biological Laboratories) on day 0 and day 2 post-immunization. Mice were monitored daily up to 42 days for signs of disease. The EAE clinical score was determined based on the following scale: 0: normal mouse, no overt signs of disease; 1: limp tail or hind limb weakness, but not both; 2: limp tail and hind limbs weakness or poor balance or head tilting when walking; 3: Limp tail and complete paralysis of hind limbs or one front and one hind limb; 4: Limp tail, complete hind limbs and partial front limbs paralysis; 5: moribund state or death. For our pathologic score, the scale ranges from 0 to 5 and represents normal to most severe immune cells’ infiltration at the myelin area. 0: no infiltration, 1: ≤10%, 2: 11–20%, 3: 21–30%, 4: 31–40%, 5: >40% (reviewed by a neuropathologist). In-between scores (i.e. 0.5, 1.5, 2.5, 3.5, 4.5) when the clinical or pathologic picture lies between two defined scores. Isolation of Splenocytes, Lymph Node Cells, and CNS Mononuclear Cells Cells were isolated from mouse spleen and cervical lymph node by mashing tissues between two frosted microscope slides. The cells were further treated with RBC lysis buffer (Gibco, catalog number: A1049201) to eliminate erythrocytes, washed, and resuspended in RPMI 1640 (Gibco, catalog number: 31800022) supplemented with 10% FBS, 2 mM L-glutamine, 100 U/ml penicillin G, 0.1 mg/ml streptomycin, and 10 mM HEPES (Life Technologies, Waltham, MA, USA). Isolation of CNS mononuclear cells was achieved using Percoll-gradient separation (GE Healthcare Bio-Sciences, Uppsala, Sweden) as previous described ([58]20). Isolation of CD11b^+CD45^intTmem119^+ Microglia From CNS Mononuclear Cells Live CD11b^+CD45^intTmem119^+ microglia were isolated by cell sorting using a FACSAria Fusion (BD Biosciences, USA). After sorting, we sampled 300 cells (by the flow cytometry) for purity check to make sure the population is >95% microglia. Hematoxylin and Eosin Stains and Immunofluorescence Mouse lumbar spinal cord sections were used for hematoxylin and eosin staining (H&E Staining Kit; Abcam, catalog number: ab245880), single myelin staining (FluoroMyelin Green Fluorescent, 1:300; Invitrogen, catalog number: [59]F34651), and triple-labeled immunofluorescence. Before primary antibody conjugation, additional blocking with mouse-on-mouse blocking reagents (Vector lab, catalog number: [60]R37621) was performed on each sample. 3-NT antibody (1:1,500; Abcam, catalog number: ab61392), in combination with antibody specific for CD11b (1:1,500; Bio-Rad, catalog number: MCA711G), ASPA (1:200; Millipore, catalog number: ABN1698), Neu-N (1:1,500; Abcam, catalog number: 177487), Iba-1 (1:1,500; WAKO, catalog number: 019-19741), or GFAP (1:1,500; DAKO, catalog number: 00087880), were used as indicated in the figure legends. Nox2 antibody (1:1,500; BD biosciences, catalog number: 611415) was counterstained with CD45 (1:1,500; BioLegend, catalog number: 103101), CD16/32 (1:1,500; BioLegend, catalog number: 101301), Iba-1 or Neu-N. Phosphorylated p65 antibody (1:500; Millipore, catalog number: 3015337) was used to detect NF-κB activation in combination with CD11b and Neu-N. Spinal cord sections were then incubated with Alexa-488 (1:1,500; Invitrogen, catalog number: A32731), Alexa-568 (1:1,500; Invitrogen, catalog number: A-11011), and Alexa-647 (1:1,500; Invitrogen, catalog number: A32733) conjugated secondary antibodies and mounted with DAPI (Vector lab, catalog number: 62248). The digital scanning analysis were kindly provided by the CMPB Image Analysis Lab at the NIEHS (LEICA-Scan scope FL System). All fluorescent images were obtained with a Zeiss LSM 780 laser scanning confocal microscope. Data were analyzed by Zen black version 2.0. In Vivo Imaging System (IVIS) In vivo imaging was performed in mice after EAE induction to measure the levels of active myeloperoxidase (MPO) in activated phagocytes non-invasively. Before study, all the mice received hair removal at areas of interest to reduce the interreference of the desired signal. Anesthesia was induced with 2% isoflurane (Abbott Laboratories) inhalation in a special air tight transparent anesthesia box for 3–5 min before the mice were moved to the light-tight chamber of the CCD camera in the imaging position. Bioluminescent images of inflammation at CNS area and MOG inoculation site were taken 10 min post intraperitoneal injection of the inflammation probe (XenoLight RediJect, PerkinElmer, 200 mg/kg) with IVIS Spectrum (PerkinElmer, 5 min of exposure time). XenoLight RediJect Inflammation Probe is a ready-to-use chemiluminescent reagent and can be conveniently applied to study MPO activity of activated phagocytes. RediJect D-Luciferin (K^+ salt) is a bioluminescent in vivo substrate in a ready-to-use pre-formulated injectable format as a Luciferin-based conjugates as the bioluminescent imaging probe. The luminescence camera was set to 60 s exposure, medium binning, f/1, blocked excitation filter, and open emission filter. The photographic camera was set to 2 s exposure, medium binning, and f/8. Field of view was set to image all mice simultaneously. Identical settings were used to acquire each image and region of interest during the study as previously described. The luminescent areas of the CNS region and MOG inoculation site were defined as the region of interest (ROI) and the total signal in the ROI (photon/sec/m^2) was quantified using Living Image software 3D (version: 4.4.17197; PerkinElmer). Flow Cytometry for T Cells and Myeloid Cells Analysis From Splenocytes, Cervical Lymphoid Cells, and CNS Mononuclear Cells Before cytokine staining, T cells underwent in vitro stimulation with PMA (40 ng/ml), Ionomycin (2 μM), Monensin (4 μM) in 1 ml RPMI 1640 (containing 10% FBS, 2 mM L-glutamine, 100 U/ml penicillin G, 0.1 mg/ml streptomycin, and 10 mM HEPES) for 4 h. Cells were resuspended in PBS supplemented with 0.5% BSA and 1 mM EDTA (FACS buffer) (splenocytes and lymphoid cells: 1 × 10^6/tube, all available CNS mononuclear cells from each sample/tube) and stained with the antibodies listed below at 4˚C for 30 min. The anti-mouse antibodies used for flow cytometric analysis were the following: anti–CD45–APC-Cy7, anti-CD4-APC, anti-IFNγ-BV421, anti-IL-17–PerCP Cy5.5, anti-IL-10–FITC, anti-Foxp3-PE, anti-CD11b-PE-Cy7, anti-Ly6G-BV421, anti-MHC II-FITC, anti-Ly6C-PerCP Cy5.5, anti-CCR2- BV510 (all antibodies were from eBiosciences or BioLegend). After staining, the cells were analyzed with FACSVerse flow cytometer. Flow cytometric data were viewed and analyzed by FlowJo v10. RNA Extraction, Reverse Transcription, and Quantitative Real-Time PCR Homogenized mouse spinal cords (L4-spine level) or primary microglia culture were lysed with 1 ml TRIzol Reagent (Invitrogen). Nucleoprotein complexes were then separated through bromochloropropane (Sigma-Aldrich), and the samples were centrifuged at 12,000 rpm at 4˚C for 15 min. Total RNA was precipitated with an equal volume of isopropanol. The samples were incubated at 25˚C for 10 min and centrifuged at 12,000 rpm at 4˚C for 15 min. The RNA pellets were collected and washed with ethanol by vigorous mixing. RNA was obtained by centrifugation at 7,500 rpm at 4˚C for 10 min. After air-drying, the RNA pellets were dissolved in RNase-free double-distilled water. Reverse transcription was performed using a Reverse Transcription Kit (Applied Biosystems) to synthesize cDNA. Quantitative real-time PCR (qPCR) was performed using FastStart Universal SYBR Green Master with ROX (Roche), and cDNA was amplified using a StepOnePlus RealTime PCR System (Applied Biosystems). PCR cycling conditions were set as follows: 95°C for 10 min, then 40 cycles of 95°C for 15 s, 60°C for 1 min, and 72°C for 20 s. The specificity of the SYBR green assay was confirmed by melting-point analysis. Expression data was calculated from the cycle threshold (Ct) value using the ΔCt method for quantification. Primer sequences are listed in [61]Supplementary Table 1 . Primary Cell Cultures Primary splenocytes culture for ELISA: 1 × 10^6/well, in 48-well plate, with or without MOG 10 μg/ml in 500 μl RPMI 1640 (10% FBS, 2 mM L-glutamine, 100 U/ml penicillin G, 0.1 mg/ml streptomycin, and 10 mM HEPES) for 72 h. Primary CNS mononuclear cells culture for ELISA: 1.5 × 10^5/well, in 48-well plate, with or without MOG 10 ug/ml in 500 μl DMEM/F12 (10% FBS, 2 mM L-glutamine, 100 U/ml penicillin G, 0.1 mg/ml streptomycin, and 10 mM HEPES) for 72 h. Primary microglia culture (CD11b^+CD45^intTmem119^+) for RNA-sequencing and ELISA: 3 × 10^4/well, in 48-well plate, overnight seeding (18 h), then added MOG 10 μg/ml in 500 μl DMEM/F12 (10% FBS, 2 mM L-glutamine, 100 U/ml penicillin G, 0.1 mg/ml streptomycin, and 10 mM HEPES) for 24 h. Enzyme-Linked Immune Absorbent Spot (ELISpot) The frequency of IFNγ, IL-4, and IL-17–producing cells on preclinical (D7) and disease peak (D17) stage at the spleen were determined using ELISpot kit (Immunospot, C.T.L.) according to the manufacturer’s instructions. Splenocytes (5 × 10^5/well, in 200 ul) were plated in an ELISpot plate coated with rat anti-mouse IFNγ, IL-4, and IL-17 capture antibodies in the presence of 10 μg/ml MOG or PMA (2 mg/ml) plus Ionomycin (0.1 μg/ml) or no in vitro stimulation. Cells were cultured overnight and IFNγ, IL-4, and IL-17 production were detected using a biotin-conjugated rat anti-mouse IFNγ, IL-4, and IL-17 detection antibodies. Avidin-HRP was then added, and spots were developed with 3-amino-9-ethylcarbamazole. Specific IFNγ, IL-4, and IL-17 production were calculated by the CTL ImmunoSpot^® Analyzers along with the ImmunoSpot^® software provided automated, objective recognition of spots, gating, and counting. Multiplex Enzyme-Linked Immunosorbent Assay (ELISA) Plasma samples were analyzed by multiplex enzyme-linked immunosorbent assay (mouse cytokine/chemokine magnetic bead panel, MCYTOMAG-70K, EMD millipore). An array of 11 cytokines/chemokines was analyzed: GM-CSF, IFNγ, TNFα, IL-1β, IL-6, IL-10, IL-12p70, IL-17A, CCL2, CCL5, and CXCL10 using a Luminex—MAGPIX^® System and MILLIPLEX Analyst 5.1 software. Assay Sensitivity: GM-CSF: 2.36 pg/ml; IFNγ: 1.04 pg/ml; TNFα: 3.04 pg/ml; IL-1β: 2.97 pg/ml; IL-6: 2.89 pg/ml; IL-10: 2.68 pg/ml; IL-12p70: 3.40 pg/ml; IL-17A: 1.21 pg/ml; CCL2: 1.13 pg/ml; CCL5: 2.64 pg/ml; CXCL10: 2.20 pg/ml. RNA-Seq Library Preparation and Sequencing Total RNA was subjected to cDNA synthesis and NGS (NextGen Sequencing) library construction using the Ovation SoLo RNA-Seq System (NuGEN Technologies, Redwood City, CA, USA). The quality and average length of sequence library for each sample was assessed using Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA) and either the DNA 1000 kit. The indexed samples were pooled equimolarily and sequenced on Illumina NovaSeq 6000 (150 bp, paired-end reads) (Illumina, San Diego, CA, USA). Bioinformatics Analysis The quantification of raw RNAseq reads was processed using CLC Genomics Workbench v.10 software. Adaptor sequences and base with low quality or ambiguous were trimmed. The quality screened reads were mapped to mouse (GRCm38) genome using CLC Genomics Workbench. The mapping parameters were the following: mismatch cost 2, insertion cost 3, deletion cost 3, length fraction of 0.5, and similarity fraction of 0.8. The expression values were calculated as FPKM (Fragments Per Kilobases per Million). The differential gene expression between two or more condition based on the fold change of FPKM value. The genes with 2-fold change were further analyzed. The total transcripts from three samples (K-pooled, W1, and W2), 46,202, were filtered with protein-coding region first and left the items with either FPKM > 1 among these three samples. KEGG database ([62]21, [63]22) was used in pathway enrichment analysis and the pathway map was plotted by pathview ([64]23) package in R. Gene set enrichment analysis and Gene ontology enrichment analysis were done with the GSEA/MSigDB ([65]24) and GO-TermFinder ([66]25), respectively. Ingenuity Pathway Analysis (IPA, Qiagen, Germantown, MD, USA) was used to search for enriched canonical pathways. Statistical Analysis Prism v5.03 software (GraphPad Software, San Diego, CA, USA) was used to generate graphs and for statistical analysis. Student unpaired t test was used for statistical analysis of the experiments in this study. All figures are presented as mean ± SEM. A p value 0.05 was defined as significant (*p < 0.05, **p < 0.01, ***p < 0.001; ns, not significant). Results Nox2 Deficiency Ameliorates EAE-Elicited Disease Severity, Body Weight Loss, Leukocyte Infiltration, and Demyelination To investigate the role of Nox2 activity during EAE pathogenesis, we utilized three genotypes of female mice including Nox2 ^+/+ (W), Nox2 ^+/− (H), Nox2 ^−/− (K) to determine the disease score and body weight changes ([67] Figures 1A, B ). The W and H mice showed similar time-related changes in clinical phenotype and symptoms onset beginning on 9~10 days post-injection (dpi) and then reached peak stage at 17 dpi, while the K mice remained almost symptomless throughout the experiment. The severity of the EAE was evaluated by the degree of leukocyte infiltration (hematoxylin and eosin staining) and demyelination (fluoromyelin staining) in spinal cord sections (L4 level) from each mouse strain. The dashed red lines outline the leukocyte invasion area and the dashed white lines mark the contour of demyelination location. These results showed that the W and H mice exhibited similar patterns of leukocyte infiltration and demyelination, whereas no clear lesions were observed in K mice ([68] Figures 1C, D ). In addition, the staining sections were evaluated blindly by a neuropathologist to give a quantitative score of infiltration and (0: normal, 5: most severe). Comparison of the EAE score and the pathologic score on disease peak (17 dpi) showed that these two scoring systems were well correlated ([69] Figure 1E ). In conclusion, Nox2-deficient mice show less inflammatory infiltration, demyelination at lumbar spinal cord after EAE induction on disease peak (17 dpi) compared with wildtype mice. Figure 1. [70]Figure 1 [71]Open in a new tab Nox2-deficient mice show less inflammatory infiltration, demyelination at lumbar spinal cord after EAE induction on disease peak (17 dpi). (A) EAE disease score and (B) Body weight change among three genotypes (mean ± SEM) [n = 33 (W), 63 (H), 46 (K)]. (C) Representative Hematoxylin and Eosin stains and (D) Fluoromyelin staining of lumbar spinal cord at the peak of EAE score (17 dpi). Left upper corner score: clinical score. Right upper corner score: pathologic score. The red dot lines outline the areas of leukocytes infiltration while the white dot lines outline the areas of demyelination. (E) Clinical score and pathologic score on day 17 based on the results of H&E stains [n = 7 (W), 11 (H), 10 (K)]. Genotype: W, Nox2 ^+/+; H, Nox2 ^+/−; K, Nox2 ^−/−. Formalin-fixed frozen section: 10 μm; spinal cord level: lumbar fourth, myelin: green; DAPI: blue. p value: *** < 0.001, * < 0.05; ns, not significant. Nox2 Deficiency Greatly Reduces EAE-Elicited MPO Activity Within the CNS and MOG Inoculation Areas For longitudinal tracking of phagocyte-mediated inflammatory status ([72]26), we injected the different mouse strains with the chemiluminescent XenoLight RediJect Inflammation Probe to measure MPO activity in activated phagocytes after EAE induction ([73] Figure 2A ). Bioluminescence here was used to assess the dynamic change of inflammation from CNS and MOG injection areas in vivo. Before being injected, mice were shaved at CNS and MOG inoculation areas for better signal detection ([74] Figure 2B ). Daily imaging analysis showed that the MPO signal present at the CNS area started to emerge at 8 dpi and was sustained up to 17 dpi in control animals, while almost no signal was detected in Nox2-deficent mice at these times ([75] Figures 2A ). Quantitative data on early (9 dpi) and peak disease (17 dpi) stage were shown on [76]Figures 2C, D . In summary, Nox2-deficient mice show greatly reduced MPO signal at both CNS and MOG injection areas compared with wildtype mice which implies less oxidative stress and neuroinflammation status from early through peak disease stages. Figure 2. [77]Figure 2 [78]Open in a new tab In vivo imaging analysis shows that EAE induction enhances MPO activity in both the CNS and MOG inoculation areas. (A) Serial daily imaging analysis showing the MPO signal at CNS and MOG inoculation areas. Right upper corner shows clinical EAE score. (B) Graph showing the shaved CNS and MOG inoculation areas for the detection of chemiluminescent signal by the IVIS Spectrum. (C) Early and (D) peak stages imaging: the MPO signal (mean ± SEM) from CNS and MOG inoculation areas on early disease stage (9 dpi) and peak stage (17 dpi) respectively. CNS area: day 9: n = 16 (W), 12 (K); day 17: 13 (W), 10 (K). MOG area: day 9: n = 9 (W), 5 (K); day 17: 4 (W), 4 (K). Genotype: W, Nox2 ^+/+; K, Nox2 ^−/−. p value: ** < 0.01, * < 0.05. Nox2 Deficiency Specifically Reduces the EAE-Elicited Invasion of Immune Cells Into the CNS To determine the immune response and immune cells population among peripheral lymphoid organs and CNS, we evaluated the proliferation and activation of T cells, neutrophils, and monocytes in the spleen, the cervical draining lymph nodes, and the CNS of each mouse strain at 17 dpi to study the distribution of pathogenic immune cells. No significant difference was observed between these mice strains regarding the levels of IFNγ (T[H]1)-producing T cells, IL-17A (T[H]17)-producing T cells, or IL-10- and Foxp3-producing regulatory CD4^+ T cells in their spleens or cervical draining lymph nodes ([79] Figure 3A ). In contrast, the number of these T cells present within the CNS was reduced in the Nox2-deficinet mice relative to controls ([80] Figure 4A ). We also were unable to detect differences in the number of neutrophils (Ly6G^+ MHC II^−), monocytes (Ly6G^−MHC II^+), or pathogenic monocytes (Ly6G^−MHCII^+ Ly6C^+CCR2^+) ([81]27) that infiltrated the spleen or cervical lymph nodes of the W and K mice ([82] Figure 3B ). However, the number of all these cell populations was greatly decreased in the CNS in Nox2-deficient mice ([83] Figures 4B, C ). Consequently, the peripheral T cells and myeloid cells profile are similar at both groups, but great reduction was observed in Nox2-deficient mice in CNS on disease peak, which implies that peripheral immune cells are already boosted and activated, but retained in the periphery rather than entering CNS. Figure 3. [84]Figure 3 [85]Open in a new tab Nox2-deficient group presented similar profile of peripheral immune response as Nox2-competent group in spleen and cervical lymph nodes on disease peak (17 dpi). (A) the T cell profiles of IFNγ (T[H]1), IL-17A (T[H]17), IL-10, and Foxp3 (Treg)-producing cells from splenocytes (spleen) and cervical lymph nodes (CLN) respectively between W and K groups (n = 5 each group). (B) the myeloid cell profiles (CD11b^+CD45^hi) of neutrophils (Ly6G^+MHC II^−), monocytes (Ly6G^-MHC II^+), and cell count of pathogenic monocytes (Ly6G^-MHCII^+Ly6C^+CCR2^+) from spleen and CLN respectively between W and K groups (n = 5 each group). p value: ns, not significant. Figure 4. [86]Figure 4 [87]Open in a new tab Nox2 deficiency greatly reduces the EAE-elicited invasion of pathogenic immune cells into the CNS on disease peak (17 dpi). (A) the T cell profiles of IFNγ (T[H]1), IL-17A (T[H]17), IL-10, and Foxp3 (Treg)-producing cells from CNS mononuclear cells between W and K groups (n = 5 each group). (B) the myeloid cell profiles (CD11b^+CD45^hi) of neutrophils (Ly6G^+ MHC II^−), monocytes (Ly6G^−MHC II^+), and (C) the absolute cell counts of pathogenic monocytes (Ly6G^−MHCII^+ Ly6C^+CCR2^+) from CNS mononuclear cells between W and K groups (n = 5 each group). p value: * < 0.05; ns, not significant. Nox2 Deficiency Specifically Decreases the EAE-Elicited Increase in the Levels of Cytokines and Chemokines Present Within the CNS To determine the cytokines/chemokines gene expression profile in the spinal cord and the protein levels from isolated CNS monocytes, we measured levels of cytokine and chemokine-encoding mRNA in the spinal cord (L4-level section) as well as the levels of cytokines and chemokines secreted from cultured monocyte isolated from the CNS at 17 dpi. MOG treatment increased mRNA levels of cytokines Ifnγ (T[H]1) and Il-17a (T[H]17) as well as chemokines Ccl2, Ccl5, Ccl6, and Cxcl10 in W mice. However, Nox2 deficiency weakened these MOG-elicited immune responses ([88] Figure 5A and [89]Supplementary Figure 1A ). By contrast, the levels of Il-4 and Ccl20 mRNAs manifested minimum differences between the W and K MOG-injected mice ([90] Supplementary Figure 1A ). We also utilized ELISA to quantify the levels of cytokines (GM-CSF, IFNγ, TNFα, IL-1β, IL-6, IL-10, IL-12p70, and IL-17A) and chemokines (CCL2, CCL5, CXCL10) secreted from primary CNS-isolated mononuclear cells at 17 dpi ([91] Figure 5B and [92]Supplementary Figure 1B ). To enhance the production of cytokines and chemokines from these cells, MOG (10 μg/ml) was added to their culture media for 3 days. MOG treatment caused a large increase in the supernatant levels of GM-CSF, IFNγ, TNFα, IL-6, IL-10, IL-17A, CCL2, CCL5, and CXCL10 produced by CNS monocytes isolated from W mice, but not those isolated from K mice. In contrast, no difference was observed in the levels of IL-1β or IL-12p70 secreted by CNS monocytes isolated from these mouse strains ([93] Figure 5B and [94]Supplementary Figure 1B ). Figure 5. Figure 5 [95]Open in a new tab Nox2 deficiency diminishes EAE-elicited increase in mRNA expression in the spinal cord and secreted proteins of cytokine and chemokines from CNS mononuclear cells on disease peak (17 dpi). (A) mRNA levels (mean ± SEM) of spinal cord (L4-level section, 0.5 μm thick tissues) at 17 dpi after MOG inoculation were determined by RT-PCR. Cytokines: Ifnγ, Il-4, Il-17a; chemokines: Ccl2, Ccl5, Cxcl10. All data were normalized as fold of Naïve-W group. (n = 3 to 5 for each group) (B) The amount of cytokines (GM-CSF, IFNγ, IL-17A) and chemokines (Ccl2, Ccl5, Cxcl10) secreted from primary mononuclear cells isolated from the CNS collected at 17 dpi after MOG inoculation were quantified by ELISA assays. (n = 3 to 5 for each group). Cell culture condition was described in the results. NS, no drug treatment; MOG: 10 μg/ml. p value: *** < 0.001, ** < 0.01, * < 0.05, ns, not significant. To investigate the immune response in the spleen of our MOG-injected mice, we first used the ELISpot assay to quantify the levels of IFNγ, IL-4, and IL-17A secreted from total splenocytes at 7 dpi (before any clinical presentation) and 17 dpi (disease peak). The W and K groups showed no significance was found between Nox2-deficent and wildtype control groups ([96] Supplementary Figure 2A ). We then used an ELISA assay to quantify the amount of cytokines (GM-CSF, IFNγ, TNFα, IL-1β, IL-6, IL-10, IL-12p70, and IL-17A) and chemokines (CCL2, CCL5, and CXCL10) secreted from these splenocytes at 17 dpi. However, we were unable to detect any difference in levels of cytokines and chemokines secreted by splenocytes isolated from our mouse strains ([97] Supplementary Figure 2B ). Collectively, these gene expression and protein level of cytokines and chemokines profiles in spleen are similar in both groups, while great reduction was found in Nox2-deficient mice in CNS. Therefore, not only the number of autoreactive T cells and myeloid cells showed great reduction in Nox2-deficient mice, but also similar trend was found in the cytokines and chemokines production in CNS on disease peak. Nox2 Deficiency Largely Reduces the Levels of Oxidative Stress in EAE Mice To determine the effect of Nox2-deficincy on the levels of oxidative stress experienced in EAE mice in the CNS, we examined levels of 3-Nitrotyrosine (3-NT), the leukocyte marker CD45, and the microglia/macrophage marker Iba-1 in MOG-injected W and K mice over a period of 6 weeks ([98] Figure 6A and [99]Supplementary Figure 3A ) in the spinal cord (L4 level). The W mice showed an abrupt increase of all these markers at 14 dpi, while the K mice showed little changes in the levels of these markers at this time. The 3-NT signal lasted for 2 weeks and subsided after 28 dpi, while the immunoreactivity of CD45 and Iba-1 remained elevated up to 42 dpi in W mice. It is important to note that MOG inoculation greatly increased the mRNA expression of two key superoxide free radical-producing molecules, Nox2 and CD11b (a-chain of Mac-1 receptor), in W mice from the spinal cord tissue ([100] Figure 6B ). Figure 6. [101]Figure 6 [102]Open in a new tab Nox2 deficiency largely reduces the production of oxidative stress and the signal of pNF-κB on disease peak (17 dpi) at spinal cord area. (A) Time-dependent of each parameter in lines as a quantitative manner. The mean fluorescence intensity of whole pixels was measured by Image J. (B) mRNA levels (mean ± SEM) of spinal cord (L4-level section, 0.5 μm thick tissues) at 17 dpi after MOG inoculation were determined by RT-PCR. Cell membrane protein: CD11b and Nox2, (C) The relationship between 3-NT (3-Nitrotyrosine, oxidative stress marker) signal and Iba-1 (microglia/macrophage), CD45 (leukocytes), CD11b (microglia/macrophage), (D) ASPA (aspartoacylase, active oligodendrocytes), (E) GFAP (astrocytes), (F) NeuN (total neurons). (G) The relationship between pNF-κB (inducible inflammatory transcription factor) and NeuN, CD11b. Genotype: W, Nox2 ^+/+; K, Nox2 ^−/−. Formalin-fixed frozen section: 10 μm. Spinal cord level: lumbar fourth. (C–F) marginal and ventral area of spinal cord (white matter); (G) ventral area of spinal cord (gray matter). p value: *** < 0.001, ** < 0.01, * < 0.05, ns, not significant. To determine cell type responsible for increasing the oxidative stress levels in EAE mice, we performed doubling-immunostaining of 3-NT and markers for different cell types: Iba-1 and CD11b for microglia/macrophage, CD45 for leukocytes, aspartoacylase (ASPA) for active mature oligodendrocytes, GFAP for astrocytes, and NeuN for neurons ([103] Figures 6C–F ). In MOG-treated W mice, high immunoreactivity of 3-NT was observed in cells expressing CD45, CD11b, and Iba-1; to a lesser degree in NeuN-positive cells, but not in either ASPA- or GFAP-positive cells. In contrast, little detectible 3-NT immunoreactivity was found in all the cell types mentioned above in MOG-treated K mice. Mean fluorescent intensity of immunofluorescent slides: 3-NT (W: 10.16 ± 0.51, K: 5.24 ± 0.21, p < 0.001), CD45 (W: 9.80 ± 0.66, K: 1.81 ± 0.33, p < 0.001), CD11b (W: 12.58 ± 1.11, K: 3.74 ± 0.34, p < 0.01), Iba-1 (W: 10.29 ± 1.10, K: 1.76 ± 0.59, p < 0.01), NeuN (W: 8.78 ± 1.26, K: 10.14 ± 0.74, p: not significant), ASPA (W: 7.70 ± 0.52, K: 9.40 ± 0.25, p < 0.05), and GFAP (W: 10.44 ± 0.58, K: 5.392 ± 0.65, p < 0.01). Regarding the costaining between Nox2 level and Iba-1, CD45, CD11b, CD16/32 (proinflammatory marker of microglia/macrophage/granulocytes) ([104]28), and NeuN (a neuronal marker) at 17 dpi ([105] Supplementary Figures 3B, C ), Nox2 signal was mostly detected in CD45, CD11b, and Iba-1 positive cells, while it was almost undetectable in NeuN positive cells. Moreover, CD16/32, M1 activation marker, was abundant at CD45 population, which implies the presence of an active inflammatory response at the peak of disease. Mean fluorescent intensity of immunofluorescent slides: Nox2 (W: 12.15 ± 1.02, K: 1.54 ± 0.63, p < 0.001), CD16/32 (W: 8.31 ± 0.55, K: 1.68 ± 0.37, p < 0.001). Since ROS activates NF-κB signaling, which modulates gene expression in diverse cellular processes such as innate immune response ([106]29, [107]30), we next determined if NF-κB plays were required for the expression of inflammatory transcription factors in our EAE model. To do this, we co-stained the active form of NF-κB (pNF-κB) with NeuN or CD11b ([108] Figure 6G ). The W mice exhibited an abundant pNF-κB signal, which partially colocalized with CD11b, but not with NeuN. Yet, the K mice showed almost no pNF-κB signal at 17 dpi. Mean fluorescent intensity of immunofluorescent slides: pNF-κB (W: 11.87 ± 1.06, K: 3.62 ± 0.22, p < 0.01). Nox2 Deficiency Diminishes the EAE-Elicited Increase in Microglia Activation as Well as Cytokine/Chemokine Secretion in the CNS To investigate the specific contribution of microglia at this model, we utilized flowcytometry analysis showed that a 58.8% decrease in the number of microglia (CD11b^+CD45^int) ([109]20, [110]31) taken at 17 dpi in K mice, as compared to controls ([111] Figure 7A ). Sorted microglia (CD11b^+CD45^intTmem119^+, purity >95%) ([112]32) from each group were then seeded in a density of 3 × 10^4/500μl/well. Following 42 h incubation, supernatants from primary microglia culture were collected for ELISA analysis ([113] Supplementary Figure 4 ). The data show that levels of IL-6, IL-10, and CCL5 were lower in the MOG-injected K mice relative the MOG-injected W mice ([114] Figure 7B ). However, levels of GM-CSF, IFNγ, TNFα, IL-17A, CCL2, and CXCL10 showed a trend of decrease in the K group compared to the W group. Nevertheless, these differences were not statistically significant. likely due to the small sample sizes. No difference was found for the levels of IL-1β and IL-12p70 between MOG-injected W and K mice ([115] Figure 7B ). Thus, Nox2-deficient microglia failed to secret enough cytokines and chemokines to induce the invasion of peripheral pathogenic immune cells into the CNS. Figure 7. [116]Figure 7 [117]Open in a new tab Cytokine/chemokine and transcriptome profiles of Nox2-deficient microglia. CD11b^+CD45^intTmem119^+ microglia were isolated from the CNS tissue of Nox2-competent and deficient mice on disease peak (17 dpi). (A) microglia (CD11b^+CD45^int) count analyzed by flow cytometry (n = 5 each group). (B) Concentrations of cytokines and chemokines released from primary cultured microglia. [n = 4 (W), 2 (K-pooled)]. MOG: 10 μg/ml. p value: * < 0.05; ns, not significant. (C) Relative mRNA levels of cytokine/chemokine genes in isolated microglia as determined by RNAseq. Color scales depict relative fold changes. (D) Significantly enriched KEGG pathways in association with immune response, inflammation, infection, and known EAE related pathways. (E) Correlations of the IFNγ-related pathway with Nox2-competent and deficient microglia transcriptome GSEA. p value: * < 0.05; ns, not significant. Nox2 Deficiency Affects Multiple Cytokine/Chemokine- and Inflammation-Related Pathways in Microglia Next, we performed RNAseq to determine the global impact of Nox2 deficiency on microglia functions and to identify Nox2 associated pathways. Genome-wide transcriptome profiling identified 1621 differentially expressed genes (DEG) with ≥ 3-fold changes between W and K microglia cells treated with exogenous MOG ([118] Supplementary Figure 4 and [119]Supplementary Table 2 ). In addition to the aforementioned changes in secreted cytokines and chemokines ([120] Figure 7B ), expression of chemotactic gene Pf4 ([121]33) and proinflammatory cytokines and chemokines Tnfrsf9, Tnfsf12, Tnfsf13, Ccl7, Cxcl3, and Cxcl9 ([122]34–[123]39) also showed a reduction in response to Nox2 deficiency ([124] Figure 7C ). These results indicate that Nox2 plays a broad role in regulating the activation of microglia ([125]1, [126]40). Gene ontology analysis performed on the KEGG pathways ([127] Supplementary Table 3 ) revealed DEG enrichment in six pathways that are associated with virus infection (human papillomavirus infection, herpes simplex virus 1 infection, and human T-cell leukemia virus 1 infection), which are known to be associated with EAE-related signaling pathways, such as the MAPK and PI3K-Akt signaling pathways as well as cytokine-cytokine receptor interaction ([128] Figure 7D ). Ingenuity Pathway Analysis further identified an enrichment of the STAT3 pathway ([129]41), glutathione-mediated detoxification ([130]42), leukotriene biosynthesis ([131]43), IL-8 signaling ([132]44), HMGB1 signaling ([133]45), NRF2-mediated oxidative stress response ([134]46), systemic lupus erythematosus in B cell signaling pathway ([135]47), and T cell exhaustion signaling pathway ([136]48) in the Nox2 gene signature and are in association with MS or EAE ([137] Table 1 and [138]Supplementary Table 4 ). Importantly, Gene Set Enrichment Analysis (GSEA) found that 35 out of 42 significantly enriched gene sets from Nox2-competent microglia are inflammation or infection-related. However, none of the 13 gene sets identified in Nox2-deficient microglia belong to these categories ([139] Supplementary Table 5 ), as exemplified by the IFNγ-related pathway ([140] Figure 7E ). Collectively, our findings suggest that Nox2 is required for the activation of and cytokine/chemokine secretion by microglia, which has important implications on the neuroinflammation process in EAE. Table 1. Nox2 dependent pathways in microglia with an association with multiple sclerosis or experimental autoimmune encephalomyelitis (EAE). Pathway p value (-log10) References