Abstract The Himalayan Arc is recognized as a global biodiversity hotspot. Among its numerous cryptic and undiscovered organisms, this composite high-mountain ecosystem harbors many taxa with adaptations to life in high elevations. However, evolutionary patterns and genomic features have been relatively rarely studied in Himalayan vertebrates. Here, we provide the first well-annotated transcriptome of a Greater Himalayan reptile species, the Ladakh Ground skink Asymblepharus ladacensis (Squamata: Scincidae). Based on tissues from the brain, an embryonic disc, and pooled organ material, using pair-end Illumina NextSeq 500 RNAseq, we assembled ~77,000 transcripts, which were annotated using seven functional databases. We tested ~1600 genes, known to be under positive selection in anurans and reptiles adapted to high elevations, and potentially detected positive selection for 114 of these genes in Asymblepharus. Even though the strength of these results is limited due to the single-animal approach, our transcriptome resource may be valuable data for further studies on squamate reptile evolution in the Himalayas as a hotspot of biodiversity. Keywords: adaptation, evolution, genomic, high elevation, Himalayas, Scincidae 1. Introduction The Himalayan arc represents one of the world’s most important faunal and floral hotspots with high species diversity and endemism [[30]1], which result from the Tertiary orogeny of this mountain chain, its complex topography as well as its great climatic heterogeneity and isolation. The genesis of the Tibetan highlands and the Himalayas since the Paleogene, with the Greater Himalayas starting to rise presumably the earliest in the post-Eocene (for a review, see the supplementary in Hofmann et al. [[31]2]), triggered the evolution of unique biodiversity under gradual high-altitude adaptation, as already shown for anurans [[32]3,[33]4,[34]5,[35]6,[36]7]. Besides amphibians, there are also several reptiles that can cope with life at high altitude in those regions, e.g., Thermophis [[37]8], Phrynocephalus [[38]9], and some Laudakia species [[39]10]. Potential constraints to upslope migration of reptiles (and amphibians) to high-elevation environments are the substantial UV-radiation, the thermal extremes, and especially the oxidative stress, referred to as high-altitude hypoxia, which interacts with temperature in a context-dependent manner to influence thermal performance and limits in terrestrial ectotherms [[40]11,[41]12]. Recent advances in high-throughput sequencing technologies have led to a growing number of genomic studies that address the molecular basis of high-altitude adaptation, some of them focused also on reptiles [[42]13,[43]14,[44]15]. However, such data have been scarce in non-model species of the Greater Himalayas (but see [[45]16]). This results from the general understudied biodiversity of this high-mountain range, presuming a relatively large number of cryptic and undiscovered species [[46]17], even among vertebrates. Molecular data from Himalayan organisms can contribute to understanding of the taxonomic and functional diversity spectra across this species-rich, fragile ecosystem. These data resources are even more important because Himalayan biodiversity is threatened at the very core; rapid warming due to climate change, especially at higher elevations, as well as higher rates of forest degradation and deforestation, infrastructural development, trade routes, and hydropower dams are driving species loss at a very alarming speed [[47]18,[48]19]. To allow future studies in evolutionary biology at a genomic level and to generally provide sufficient and relevant data for Himalayan reptiles, in the present study, we have generated a new genomics data set based on RNAseq for a scincid species from the Greater Himalayas. Using these data, we specifically aimed to identify genes known to play roles in adaptation of terrestrial ectothermic vertebrates to high elevations. Since exposure to oxidative stress can particularly affect the physiology during early development [[49]20] and in oxygen-sensitive organs [[50]21,[51]22], such as the nerve system, we focused on embryonic and brain tissue samples. Our target species is a scincid lizard in the genus Asymblepharus, the Ladakh Ground Skink, A. ladacensis (GÜNTHER, 1864), which is endemic to the western part of the Himalayas. The genus further contains the following species ([52]Figure 1): A. alaicus (ELPATJEVSKY, 1901), A. eremchenkoi PANFILOV, 1999, A. himalayanus (GÜNTHER, 1864), A. mahabharatus EREMCHENKO, SHAH & PANFILOV, 1998, A. nepalensis EREMCHENKO & HELFENBERGER, 1998, and A. tragbulensis (ALCOCK, 1898). Another two species, Asymblepharus medogensis JIANG, WU, GUO, LI & CHE, 2020 and A. nyingchiensis JIANG, WU, WANG, DING & CHE, 2020, have been described very recently from Mêdog, Nyingchi in SE Tibet, China. According to a large-scale phylogenetic study of squamates [[53]23], the sampled specimen of A. sikimmensis (BLYTH, 1854) is nested within Scincella and was therefore suggested to be transferred to this genus. However, it remains unclear whether this single specimen had been misidentified as A. sikimmensis since originally it was labeled in the museum collection as Scincella potanini (voucher catalogue number CAS:HERP:194923, see [54]http://portal.vertnet.org/o/cas/herp?id=urn-catalog-cas-herp-194923 (accessed on 29 July 2021) [[55]24]. Figure 1. [56]Figure 1 [57]Open in a new tab Map of Asymblepharus species based on GBIF ([58]www.gbif.org; accessed on 20 July 2021) records of preserved specimens and georeferenced localities in the taxonomic reptile database ([59]https://reptile-database.reptarium.cz/; accessed on 20 July 2021). The location of our RNA sample of the female A. ladacensis (photo) is indicated by a green circle with a dot in the middle and an arrow. * Note, according to a large-scale phylogeny of squamates, A. sikimmensis is nested within Scincella; however, it remains unclear whether this single “A. sikimmensis” specimen, on which the sequence data are based, had been taxonomically correctly identified. Therefore, we also show the GBIF records of specimens collected as A. sikimmensis. Records of A. eremchenkoi in the databases could not be georeferenced due to insufficient information on the collection site. Photo credit: Sylvia Hofmann. In general, Asymblepharus is a genus with a still poorly known endemic distribution, origin, and evolutionary history. No studies of its population genetic structure and genetic diversity exist to date for any Asymblepharus taxon, and the current taxonomic relationships of its lineages are in flux [[60]23,[61]24,[62]25]. The three Himalayan species A. himalayanus, A. ladacensis, and A. tragbulensis have frequently been assigned to the genus Himalblepharus Eremchenko, 1987. According to literature data ([[63]26] and references therein) and