Introduction

Let’s do some enrichment analysis.

suppressPackageStartupMessages({
  library("gplots")
  library("reshape2")
  library("WGCNA")
  library("dplyr")
  library("DESeq2")
  library("mitch")
  library("MASS")
  library("kableExtra")
  library("ggplot2")
  library("eulerr")
  library("DT")
  library("xlsx")
})

load("qc.Rds")

Load REACTOME gene sets

reactome <- mitch::gmt_import("ReactomePathways_30oct24.gmt")

Gene table

gt <- read.table("../ref/gencode.v38.genetable.tsv")

rownames(gt) <- paste(gt[,1],gt[,2])

gt[,1] <- rownames(gt)

Individual contrast analysis unstratified

Start with Reactome gene sets

Firstly we do the unstratified contrasts.

  • crp_t0_adj
  • crp_eos_adj
  • crp_pod1_adj
  • avb_t0_adj
  • avb_eos_adj
  • avb_pod1_adj
de <- crp_t0_adj
myname <- "crp_t0_adj"

m <- mitch_import(x=de, DEtype="deseq2", geneTable=gt )
## The input is a single dataframe; one contrast only. Converting
##         it to a list for you.
## Note: Mean no. genes in input = 21935
## Note: no. genes in output = 21870
## Note: estimated proportion of input genes in output = 0.997
mres <- mitch_calc(x=m,genesets=reactome,minsetsize=5,cores=16,priority="effect")
## Note: Enrichments with large effect sizes may not be
##             statistically significant.
mtop <- head(subset (mres$enrichment_result,p.adjustANOVA<0.05),30)
mtop |> kbl(caption=paste(myname,"REACTOME")) |> kable_paper("hover", full_width = F)
crp_t0_adj REACTOME
set setSize pANOVA s.dist p.adjustANOVA
1140 Phosphate bond hydrolysis by NTPDase proteins 5 0.0059553 -0.7101669 0.0428206
1492 SUMO is proteolytically processed 6 0.0058929 -0.6491188 0.0425305
1141 Phosphate bond hydrolysis by NUDT proteins 7 0.0065798 -0.5930633 0.0462745
979 NOTCH4 Activation and Transmission of Signal to the Nucleus 10 0.0012732 -0.5883440 0.0145050
1361 Regulation of NFE2L2 gene expression 8 0.0042839 0.5831580 0.0342817
1633 Small interfering RNA (siRNA) biogenesis 9 0.0033815 -0.5641147 0.0289609
155 Beta-oxidation of pristanoyl-CoA 9 0.0045002 -0.5468033 0.0352517
317 Cytochrome c-mediated apoptotic response 13 0.0006671 -0.5450005 0.0088792
1186 Processing and activation of SUMO 10 0.0036633 -0.5306221 0.0303662
26 ATF6 (ATF6-alpha) activates chaperones 12 0.0020613 -0.5136563 0.0202662
111 Apoptosis induced DNA fragmentation 10 0.0057719 -0.5040897 0.0419695
558 Formation of apoptosome 11 0.0047614 -0.4914847 0.0364093
1411 Regulation of the apoptosome activity 11 0.0047614 -0.4914847 0.0364093
851 MAPK3 (ERK1) activation 10 0.0073218 -0.4897347 0.0496801
87 Advanced glycosylation endproduct receptor signaling 12 0.0036717 -0.4842926 0.0303662
1358 Regulation of MITF-M-dependent genes involved in lysosome biogenesis and autophagy 16 0.0008088 -0.4836414 0.0103211
454 ER Quality Control Compartment (ERQC) 21 0.0001924 -0.4699681 0.0034007
104 Antigen Presentation: Folding, assembly and peptide loading of class I MHC 30 0.0000104 -0.4649542 0.0003644
411 Diseases of branched-chain amino acid catabolism 13 0.0039261 -0.4619362 0.0317879
989 NRIF signals cell death from the nucleus 15 0.0023776 -0.4530863 0.0225696
217 Calnexin/calreticulin cycle 26 0.0000695 -0.4506219 0.0015399
958 N-glycan trimming in the ER and Calnexin/Calreticulin cycle 35 0.0000052 -0.4448415 0.0002190
730 Incretin synthesis, secretion, and inactivation 14 0.0045889 -0.4375065 0.0355135
1692 Synthesis, secretion, and inactivation of Glucagon-like Peptide-1 (GLP-1) 14 0.0045889 -0.4375065 0.0355135
1161 Platelet sensitization by LDL 16 0.0029602 -0.4290862 0.0265318
715 IRAK4 deficiency (TLR2/4) 15 0.0050636 -0.4179700 0.0381157
924 Mitochondrial calcium ion transport 22 0.0010350 -0.4040187 0.0123882
1375 Regulation of TLR by endogenous ligand 15 0.0071834 -0.4008633 0.0491033
661 Golgi Associated Vesicle Biogenesis 55 0.0000010 -0.3805897 0.0000590
657 Glycosphingolipid catabolism 31 0.0004123 -0.3664900 0.0061976
vec <- mtop$s.dist
names(vec) <- mtop$set
vec <- sort(vec)
par( mar = c(5.1, 25.1, 4.1, 2.1) )
barplot(vec,horiz=TRUE,las=1,cex.names=0.7,xlab="ES",main=myname)

par( mar = c(5.1, 4.1, 4.1, 2.1) )
mitch_report(res=mres,outfile=paste(myname,"_mitchreport.html",sep=""),overwrite=TRUE)
## Note: overwriting existing report
## Dataset saved as " /tmp/RtmpDAn7eA/crp_t0_adj_mitchreport.rds ".
## 
## 
## processing file: mitch.Rmd
## 1/34                             
## 2/34 [checklibraries]            
## 3/34                             
## 4/34 [peek]                      
## 5/34                             
## 6/34 [metrics]                   
## 7/34                             
## 8/34 [scatterplot]
## 9/34                             
## 10/34 [contourplot]               
## 11/34                             
## 12/34 [input_geneset_metrics1]    
## 13/34                             
## 14/34 [input_geneset_metrics2]
## 15/34                             
## 16/34 [input_geneset_metrics3]
## 17/34                             
## 18/34 [echart1d]                  
## 19/34 [echart2d]                  
## 20/34                             
## 21/34 [heatmap]                   
## 22/34                             
## 23/34 [effectsize]                
## 24/34                             
## 25/34 [results_table]             
## 26/34                             
## 27/34 [results_table_complete]    
## 28/34                             
## 29/34 [detailed_geneset_reports1d]
## 30/34                             
## 31/34 [detailed_geneset_reports2d]
## 32/34                             
## 33/34 [session_info]              
## 34/34
## output file: /home/mark.ziemann@domain.internal.burnet.edu.au/projects/paddi_data/dge/mitch.knit.md
## /usr/bin/pandoc +RTS -K512m -RTS /home/mark.ziemann@domain.internal.burnet.edu.au/projects/paddi_data/dge/mitch.knit.md --to html4 --from markdown+autolink_bare_uris+tex_math_single_backslash --output /tmp/RtmpDAn7eA/mitch_report.html --lua-filter /usr/local/lib/R/site-library/rmarkdown/rmarkdown/lua/pagebreak.lua --lua-filter /usr/local/lib/R/site-library/rmarkdown/rmarkdown/lua/latex-div.lua --self-contained --variable bs3=TRUE --section-divs --template /usr/local/lib/R/site-library/rmarkdown/rmd/h/default.html --no-highlight --variable highlightjs=1 --variable theme=bootstrap --mathjax --variable 'mathjax-url=https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML' --include-in-header /tmp/RtmpDAn7eA/rmarkdown-str383e3928c93c92.html
## 
## Output created: /tmp/RtmpDAn7eA/mitch_report.html
## [1] TRUE
de <- crp_eos_adj
myname <- "crp_eos_adj"

m <- mitch_import(x=de, DEtype="deseq2", geneTable=gt )
## The input is a single dataframe; one contrast only. Converting
##         it to a list for you.
## Note: Mean no. genes in input = 22067
## Note: no. genes in output = 21999
## Note: estimated proportion of input genes in output = 0.997
mres <- mitch_calc(x=m,genesets=reactome,minsetsize=5,cores=16,priority="effect")
## Note: Enrichments with large effect sizes may not be
##             statistically significant.
mtop <- head(subset (mres$enrichment_result,p.adjustANOVA<0.05),30)
mtop |> kbl(caption=paste(myname,"REACTOME")) |> kable_paper("hover", full_width = F)
crp_eos_adj REACTOME
set setSize pANOVA s.dist p.adjustANOVA
550 Formation of ATP by chemiosmotic coupling 20 0.0000000 -0.8530097 0.0000000
1127 Peptide chain elongation 88 0.0000000 -0.8425511 0.0000000
559 Formation of a pool of free 40S subunits 100 0.0000000 -0.8424595 0.0000000
495 Eukaryotic Translation Elongation 93 0.0000000 -0.8344481 0.0000000
1867 Viral mRNA Translation 88 0.0000000 -0.8310749 0.0000000
815 L13a-mediated translational silencing of Ceruloplasmin expression 110 0.0000000 -0.8264242 0.0000000
946 Modulation by Mtb of host immune system 7 0.0001529 -0.8262745 0.0008767
619 GTP hydrolysis and joining of the 60S ribosomal subunit 111 0.0000000 -0.8220136 0.0000000
1454 SARS-CoV-1 modulates host translation machinery 36 0.0000000 -0.8190467 0.0000000
220 Cap-dependent Translation Initiation 118 0.0000000 -0.8166167 0.0000000
496 Eukaryotic Translation Initiation 118 0.0000000 -0.8166167 0.0000000
572 Formation of the ternary complex, and subsequently, the 43S complex 51 0.0000000 -0.8125909 0.0000000
497 Eukaryotic Translation Termination 92 0.0000000 -0.8098811 0.0000000
934 Mitochondrial translation initiation 90 0.0000000 -0.8069814 0.0000000
1487 SRP-dependent cotranslational protein targeting to membrane 111 0.0000000 -0.8054049 0.0000000
1514 Selenocysteine synthesis 92 0.0000000 -0.8045751 0.0000000
1039 Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) 94 0.0000000 -0.8021991 0.0000000
73 Activation of the mRNA upon binding of the cap-binding complex and eIFs, and subsequent binding to 43S 59 0.0000000 -0.7962023 0.0000000
933 Mitochondrial translation elongation 90 0.0000000 -0.7937154 0.0000000
1803 Translation initiation complex formation 58 0.0000000 -0.7930814 0.0000000
1445 Ribosomal scanning and start codon recognition 58 0.0000000 -0.7914203 0.0000000
935 Mitochondrial translation termination 90 0.0000000 -0.7834619 0.0000000
932 Mitochondrial translation 96 0.0000000 -0.7762521 0.0000000
1433 Response of EIF2AK4 (GCN2) to amino acid deficiency 100 0.0000000 -0.7641189 0.0000000
291 Complex III assembly 23 0.0000000 -0.7620725 0.0000000
1143 Phosphate bond hydrolysis by NUDT proteins 7 0.0005944 -0.7494543 0.0029675
1493 SUMO is conjugated to E1 (UBA2:SAE1) 5 0.0039845 -0.7435119 0.0156782
119 Arachidonate production from DAG 5 0.0040981 -0.7412203 0.0160272
1802 Translation 293 0.0000000 -0.7315676 0.0000000
1460 SARS-CoV-2 modulates host translation machinery 49 0.0000000 -0.7302348 0.0000000
vec <- mtop$s.dist
names(vec) <- mtop$set
vec <- sort(vec)
par( mar = c(5.1, 25.1, 4.1, 2.1) )
barplot(vec,horiz=TRUE,las=1,cex.names=0.7,xlab="ES",main=myname)

par( mar = c(5.1, 4.1, 4.1, 2.1) )
mitch_report(res=mres,outfile=paste(myname,"_mitchreport.html",sep=""),overwrite=TRUE)
## Note: overwriting existing report
## Dataset saved as " /tmp/RtmpDAn7eA/crp_eos_adj_mitchreport.rds ".
## 
## 
## processing file: mitch.Rmd
## 1/34                             
## 2/34 [checklibraries]            
## 3/34                             
## 4/34 [peek]                      
## 5/34                             
## 6/34 [metrics]                   
## 7/34                             
## 8/34 [scatterplot]
## 9/34                             
## 10/34 [contourplot]               
## 11/34                             
## 12/34 [input_geneset_metrics1]    
## 13/34                             
## 14/34 [input_geneset_metrics2]
## 15/34                             
## 16/34 [input_geneset_metrics3]
## 17/34                             
## 18/34 [echart1d]                  
## 19/34 [echart2d]                  
## 20/34                             
## 21/34 [heatmap]                   
## 22/34                             
## 23/34 [effectsize]                
## 24/34                             
## 25/34 [results_table]             
## 26/34                             
## 27/34 [results_table_complete]    
## 28/34                             
## 29/34 [detailed_geneset_reports1d]
## 30/34                             
## 31/34 [detailed_geneset_reports2d]
## 32/34                             
## 33/34 [session_info]              
## 34/34
## output file: /home/mark.ziemann@domain.internal.burnet.edu.au/projects/paddi_data/dge/mitch.knit.md
## /usr/bin/pandoc +RTS -K512m -RTS /home/mark.ziemann@domain.internal.burnet.edu.au/projects/paddi_data/dge/mitch.knit.md --to html4 --from markdown+autolink_bare_uris+tex_math_single_backslash --output /tmp/RtmpDAn7eA/mitch_report.html --lua-filter /usr/local/lib/R/site-library/rmarkdown/rmarkdown/lua/pagebreak.lua --lua-filter /usr/local/lib/R/site-library/rmarkdown/rmarkdown/lua/latex-div.lua --self-contained --variable bs3=TRUE --section-divs --template /usr/local/lib/R/site-library/rmarkdown/rmd/h/default.html --no-highlight --variable highlightjs=1 --variable theme=bootstrap --mathjax --variable 'mathjax-url=https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML' --include-in-header /tmp/RtmpDAn7eA/rmarkdown-str383e39e3a9d7b.html
## 
## Output created: /tmp/RtmpDAn7eA/mitch_report.html
## [1] TRUE
de <- crp_pod1_adj
myname <- "crp_pod1_adj"

m <- mitch_import(x=de, DEtype="deseq2", geneTable=gt )
## The input is a single dataframe; one contrast only. Converting
##         it to a list for you.
## Note: Mean no. genes in input = 21313
## Note: no. genes in output = 21253
## Note: estimated proportion of input genes in output = 0.997
mres <- mitch_calc(x=m,genesets=reactome,minsetsize=5,cores=16,priority="effect")
## Note: Enrichments with large effect sizes may not be
##             statistically significant.
mtop <- head(subset (mres$enrichment_result,p.adjustANOVA<0.05),30)
mtop |> kbl(caption=paste(myname,"REACTOME")) |> kable_paper("hover", full_width = F)
crp_pod1_adj REACTOME
set setSize pANOVA s.dist p.adjustANOVA
178 CD163 mediating an anti-inflammatory response 8 0.0000191 0.8726171 0.0003500
749 Insulin-like Growth Factor-2 mRNA Binding Proteins (IGF2BPs/IMPs/VICKZs) bind RNA 6 0.0005537 0.8140130 0.0062563
1430 Response to metal ions 6 0.0010264 0.7739132 0.0102691
736 Inhibition of Signaling by Overexpressed EGFR 5 0.0035418 0.7530497 0.0269992
1597 Signaling by Overexpressed Wild-Type EGFR in Cancer 5 0.0035418 0.7530497 0.0269992
569 Formation of xylulose-5-phosphate 5 0.0052750 -0.7203690 0.0359098
962 NFE2L2 regulates pentose phosphate pathway genes 8 0.0005943 0.7010826 0.0065988
596 G2/M DNA replication checkpoint 5 0.0073992 0.6916039 0.0448668
554 Formation of a pool of free 40S subunits 100 0.0000000 -0.6857959 0.0000000
1120 Peptide chain elongation 88 0.0000000 -0.6830681 0.0000000
490 Eukaryotic Translation Elongation 93 0.0000000 -0.6712218 0.0000000
1507 Selenocysteine synthesis 92 0.0000000 -0.6661147 0.0000000
1856 Viral mRNA Translation 88 0.0000000 -0.6576155 0.0000000
1447 SARS-CoV-1 modulates host translation machinery 36 0.0000000 -0.6564731 0.0000000
444 EGFR interacts with phospholipase C-gamma 6 0.0054930 0.6545238 0.0363862
492 Eukaryotic Translation Termination 92 0.0000000 -0.6545111 0.0000000
567 Formation of the ternary complex, and subsequently, the 43S complex 51 0.0000000 -0.6435482 0.0000000
809 L13a-mediated translational silencing of Ceruloplasmin expression 110 0.0000000 -0.6423205 0.0000000
1909 rRNA modification in the mitochondrion 8 0.0017418 -0.6392092 0.0156352
1033 Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) 94 0.0000000 -0.6370369 0.0000000
1679 Synthesis of diphthamide-EEF2 8 0.0018132 -0.6367969 0.0159180
613 GTP hydrolysis and joining of the 60S ribosomal subunit 111 0.0000000 -0.6301542 0.0000000
216 Cap-dependent Translation Initiation 118 0.0000000 -0.6262694 0.0000000
491 Eukaryotic Translation Initiation 118 0.0000000 -0.6262694 0.0000000
479 Erythrocytes take up oxygen and release carbon dioxide 7 0.0049225 0.6137222 0.0347652
72 Activation of the mRNA upon binding of the cap-binding complex and eIFs, and subsequent binding to 43S 59 0.0000000 -0.5977691 0.0000000
1793 Translation initiation complex formation 58 0.0000000 -0.5923730 0.0000000
1356 Regulation of NFE2L2 gene expression 8 0.0038452 0.5901271 0.0287417
1483 STAT5 activation downstream of FLT3 ITD mutants 9 0.0021709 0.5901065 0.0181321
1426 Response of EIF2AK4 (GCN2) to amino acid deficiency 100 0.0000000 -0.5868331 0.0000000
vec <- mtop$s.dist
names(vec) <- mtop$set
vec <- sort(vec)
par( mar = c(5.1, 25.1, 4.1, 2.1) )
barplot(vec,horiz=TRUE,las=1,cex.names=0.7,xlab="ES",main=myname)

par( mar = c(5.1, 4.1, 4.1, 2.1) )
mitch_report(res=mres,outfile=paste(myname,"_mitchreport.html",sep=""),overwrite=TRUE)
## Note: overwriting existing report
## Dataset saved as " /tmp/RtmpDAn7eA/crp_pod1_adj_mitchreport.rds ".
## 
## 
## processing file: mitch.Rmd
## 1/34                             
## 2/34 [checklibraries]            
## 3/34                             
## 4/34 [peek]                      
## 5/34                             
## 6/34 [metrics]                   
## 7/34                             
## 8/34 [scatterplot]
## 9/34                             
## 10/34 [contourplot]               
## 11/34                             
## 12/34 [input_geneset_metrics1]    
## 13/34                             
## 14/34 [input_geneset_metrics2]
## 15/34                             
## 16/34 [input_geneset_metrics3]
## 17/34                             
## 18/34 [echart1d]                  
## 19/34 [echart2d]                  
## 20/34                             
## 21/34 [heatmap]                   
## 22/34                             
## 23/34 [effectsize]                
## 24/34                             
## 25/34 [results_table]             
## 26/34                             
## 27/34 [results_table_complete]    
## 28/34                             
## 29/34 [detailed_geneset_reports1d]
## 30/34                             
## 31/34 [detailed_geneset_reports2d]
## 32/34                             
## 33/34 [session_info]              
## 34/34
## output file: /home/mark.ziemann@domain.internal.burnet.edu.au/projects/paddi_data/dge/mitch.knit.md
## /usr/bin/pandoc +RTS -K512m -RTS /home/mark.ziemann@domain.internal.burnet.edu.au/projects/paddi_data/dge/mitch.knit.md --to html4 --from markdown+autolink_bare_uris+tex_math_single_backslash --output /tmp/RtmpDAn7eA/mitch_report.html --lua-filter /usr/local/lib/R/site-library/rmarkdown/rmarkdown/lua/pagebreak.lua --lua-filter /usr/local/lib/R/site-library/rmarkdown/rmarkdown/lua/latex-div.lua --self-contained --variable bs3=TRUE --section-divs --template /usr/local/lib/R/site-library/rmarkdown/rmd/h/default.html --no-highlight --variable highlightjs=1 --variable theme=bootstrap --mathjax --variable 'mathjax-url=https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML' --include-in-header /tmp/RtmpDAn7eA/rmarkdown-str383e397635871b.html
## 
## Output created: /tmp/RtmpDAn7eA/mitch_report.html
## [1] TRUE

Multi-contrast enrichment analysis.

l1 <- list("crp_t0_adj"=crp_t0_adj,"crp_eos_adj"=crp_eos_adj,
  "crp_pod1_adj"=crp_pod1_adj,"avb_t0_adj"=avb_t0_adj,
  "avb_eos_adj"=avb_eos_adj,"avb_pod1_adj"=avb_pod1_adj)

m1 <- mitch_import(x=l1, DEtype="deseq2", geneTable=gt )
## Note: Mean no. genes in input = 21771.6666666667
## Note: no. genes in output = 21032
## Note: estimated proportion of input genes in output = 0.966
mm1 <- mitch_calc(x=m1,genesets=reactome,minsetsize=5,cores=16,priority="effect")
## Note: Enrichments with large effect sizes may not be 
##             statistically significant.
top <- head(subset (mm1$enrichment_result,p.adjustMANOVA<0.05),50)
top <- top[,c(1,4:9)]
rownames(top) <- top[,1]
top[,1] = NULL

colfunc <- colorRampPalette(c("blue", "white", "red"))

heatmap.2(as.matrix(top),trace="none",col=colfunc(25),scale="none",
    margins = c(6,25), cexRow=0.6, cexCol=0.8 )

as.matrix(top) |> kbl(caption="Top REACTOMEs in multi enrichment analysis") |> kable_paper("hover", full_width = F)
Top REACTOMEs in multi enrichment analysis
s.crp_t0_adj s.crp_eos_adj s.crp_pod1_adj s.avb_t0_adj s.avb_eos_adj s.avb_pod1_adj
Regulation of NFE2L2 gene expression 0.5891124 0.6426941 0.5937738 0.8527516 0.1618389 -0.0422493
Protein repair -0.5129839 -0.4712578 0.3864580 -0.4542788 -0.7443958 0.6463743
G2/M DNA replication checkpoint -0.1564940 -0.5453274 0.6956485 0.4163314 -0.6025111 0.6742093
Interleukin-21 signaling 0.2427447 0.6305739 0.3235980 0.7074844 0.5108638 0.6565666
Response to metal ions 0.2238657 -0.4391388 0.7772440 0.1266052 -0.5004439 0.6562986
Formation of xylulose-5-phosphate -0.5645979 -0.5993342 -0.7188187 0.0256908 0.5512627 -0.2090550
MECP2 regulates transcription of neuronal ligands 0.2891616 0.4716507 -0.1094307 0.7554763 0.7264660 0.2340705
CD163 mediating an anti-inflammatory response -0.1675466 0.0306436 0.8753092 -0.0382063 -0.7842109 -0.0578149
Defective binding of VWF variant to GPIb:IX:V 0.4129453 -0.7073667 0.3276835 -0.2818947 -0.7251344 0.1212251
Enhanced binding of GP1BA variant to VWF multimer:collagen 0.4129453 -0.7073667 0.3276835 -0.2818947 -0.7251344 0.1212251
SUMO is conjugated to E1 (UBA2:SAE1) -0.6691111 -0.7382794 -0.2371142 -0.0034147 -0.3656727 0.4093879
Formation of a pool of free 40S subunits -0.2566317 -0.8482740 -0.6834190 -0.1132179 -0.0326376 -0.2669542
Peptide chain elongation -0.2300711 -0.8496303 -0.6805657 -0.1098822 -0.0032526 -0.2731966
Eukaryotic Translation Elongation -0.2150399 -0.8408237 -0.6685987 -0.1031363 0.0006468 -0.2637795
Tandem pore domain potassium channels -0.2743235 0.4669710 0.3646455 0.4244923 0.6838921 0.4323489
Viral mRNA Translation -0.2357016 -0.8380367 -0.6547938 -0.1133845 -0.0177679 -0.2422343
L13a-mediated translational silencing of Ceruloplasmin expression -0.2894286 -0.8311029 -0.6395161 -0.1316803 -0.0702589 -0.2270698
MET activates PI3K/AKT signaling -0.4461407 0.5910211 0.4899700 -0.2374186 -0.4362106 0.4578589
Type I hemidesmosome assembly 0.1838613 0.3568065 0.5685883 0.5944873 0.2748169 0.5740225
GTP hydrolysis and joining of the 60S ribosomal subunit -0.2881499 -0.8265132 -0.6271910 -0.1367799 -0.0694519 -0.2223028
Modulation by Mtb of host immune system -0.4328656 -0.8225786 -0.3276847 -0.1432376 -0.4856735 0.0329200
Selenocysteine synthesis -0.2285296 -0.8105845 -0.6634018 -0.0895205 0.0035070 -0.2575310
SARS-CoV-1 modulates host translation machinery -0.1977731 -0.8159914 -0.6547094 -0.1223513 -0.0175113 -0.2659501
Formation of the ternary complex, and subsequently, the 43S complex -0.2805386 -0.8092074 -0.6417244 -0.1415258 -0.0843798 -0.2149835
Cap-dependent Translation Initiation -0.2791588 -0.8205328 -0.6233227 -0.1298046 -0.0611580 -0.2299552
Eukaryotic Translation Initiation -0.2791588 -0.8205328 -0.6233227 -0.1298046 -0.0611580 -0.2299552
Phosphate bond hydrolysis by NUDT proteins -0.5898896 -0.7452421 -0.4329879 -0.2569798 -0.2306030 -0.0152947
Eukaryotic Translation Termination -0.2201376 -0.8159864 -0.6516199 -0.0855008 -0.0029801 -0.2415845
POLB-Dependent Long Patch Base Excision Repair 0.1599957 -0.2593584 -0.5704790 0.6590088 0.5523568 -0.1608638
Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) -0.2287798 -0.8079049 -0.6339680 -0.0859481 -0.0370451 -0.2443447
Activation of the mRNA upon binding of the cap-binding complex and eIFs, and subsequent binding to 43S -0.3254653 -0.7927068 -0.5959163 -0.1553078 -0.1335494 -0.2064002
Translation initiation complex formation -0.3192869 -0.7895309 -0.5904996 -0.1471066 -0.1325796 -0.1938755
Ribosomal scanning and start codon recognition -0.3196355 -0.7878260 -0.5767469 -0.1538259 -0.1338620 -0.1999372
Fructose metabolism -0.2746730 -0.2257924 -0.5791812 -0.1399898 0.3878852 -0.7030338
SRP-dependent cotranslational protein targeting to membrane -0.3137107 -0.8098174 -0.5609293 -0.0984375 -0.1043486 -0.0969393
RUNX1 regulates transcription of genes involved in BCR signaling 0.0000793 0.3428929 0.5935667 -0.1495609 -0.6900029 0.3421954
Replacement of protamines by nucleosomes in the male pronucleus -0.2815335 -0.6127894 0.2507770 -0.2856882 -0.6285363 0.3004757
Activation of caspases through apoptosome-mediated cleavage -0.5968166 -0.2860427 0.1480389 -0.0998446 0.0273629 0.7806208
Phosphorylation of Emi1 0.2315229 -0.2473287 0.4386315 0.7338533 -0.0986239 0.4530898
FASTK family proteins regulate processing and stability of mitochondrial RNAs -0.0944954 -0.7225076 -0.0366615 -0.1399710 -0.6908079 -0.1462528
Response of EIF2AK4 (GCN2) to amino acid deficiency -0.2305147 -0.7689840 -0.5831897 -0.1372638 -0.0329512 -0.2134849
Post-transcriptional silencing by small RNAs -0.2110888 0.7144488 0.3228877 0.2451979 0.3767148 0.4194530
CD22 mediated BCR regulation 0.1548736 -0.5511716 0.2320515 0.4102152 -0.5203513 0.4497008
Mitochondrial translation initiation -0.1122274 -0.8032736 -0.5660724 0.0899744 -0.1013890 -0.0876049
Regulation of NPAS4 gene expression -0.1496123 0.6113497 0.2834784 0.3270280 0.4091969 0.4966938
SUMO is transferred from E1 to E2 (UBE2I, UBC9) -0.4931748 -0.6900696 -0.3916358 0.0716630 -0.2196093 0.2663156
Formation of ATP by chemiosmotic coupling -0.3101751 -0.8499857 -0.2985294 0.0290977 -0.2920522 0.0350609
Mitochondrial translation elongation -0.1010272 -0.7899935 -0.5572109 0.0970002 -0.1003470 -0.1107609
Activation of NIMA Kinases NEK9, NEK6, NEK7 0.0210837 -0.0371870 0.4604111 0.4825616 -0.1372991 0.7083336
NR1H2 & NR1H3 regulate gene expression linked to triglyceride lipolysis in adipose -0.0419366 0.1356637 -0.0841109 0.6942217 0.4581823 -0.4914729
mitch_report(res=mm1,outfile="multireactome_all_mitchreport.html",overwrite=TRUE)
## Dataset saved as " /tmp/RtmpDAn7eA/multireactome_all_mitchreport.rds ".
## 
## 
## processing file: mitch.Rmd
## 1/34                             
## 2/34 [checklibraries]            
## 3/34                             
## 4/34 [peek]                      
## 5/34                             
## 6/34 [metrics]                   
## 7/34                             
## 8/34 [scatterplot]
## 9/34                             
## 10/34 [contourplot]
## 11/34                             
## 12/34 [input_geneset_metrics1]    
## 13/34                             
## 14/34 [input_geneset_metrics2]
## 15/34                             
## 16/34 [input_geneset_metrics3]    
## 17/34                             
## 18/34 [echart1d]                  
## 19/34 [echart2d]                  
## 20/34                             
## 21/34 [heatmap]
## 22/34                             
## 23/34 [effectsize]                
## 24/34                             
## 25/34 [results_table]             
## 26/34                             
## 27/34 [results_table_complete]    
## 28/34                             
## 29/34 [detailed_geneset_reports1d]
## 30/34                             
## 31/34 [detailed_geneset_reports2d]
## 32/34                             
## 33/34 [session_info]              
## 34/34
## output file: /home/mark.ziemann@domain.internal.burnet.edu.au/projects/paddi_data/dge/mitch.knit.md
## /usr/bin/pandoc +RTS -K512m -RTS /home/mark.ziemann@domain.internal.burnet.edu.au/projects/paddi_data/dge/mitch.knit.md --to html4 --from markdown+autolink_bare_uris+tex_math_single_backslash --output /tmp/RtmpDAn7eA/mitch_report.html --lua-filter /usr/local/lib/R/site-library/rmarkdown/rmarkdown/lua/pagebreak.lua --lua-filter /usr/local/lib/R/site-library/rmarkdown/rmarkdown/lua/latex-div.lua --self-contained --variable bs3=TRUE --section-divs --template /usr/local/lib/R/site-library/rmarkdown/rmd/h/default.html --no-highlight --variable highlightjs=1 --variable theme=bootstrap --mathjax --variable 'mathjax-url=https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML' --include-in-header /tmp/RtmpDAn7eA/rmarkdown-str383e39241f9c54.html
## 
## Output created: /tmp/RtmpDAn7eA/mitch_report.html
## [1] TRUE

This might work better if we work on each timepoint separately.

l1 <- list("crp_t0_adj"=crp_t0_adj, "avb_t0_adj"=avb_t0_adj)
m1 <- mitch_import(x=l1, DEtype="deseq2", geneTable=gt )
## Note: Mean no. genes in input = 21935
## Note: no. genes in output = 21870
## Note: estimated proportion of input genes in output = 0.997
mm1 <- mitch_calc(x=m1,genesets=reactome,minsetsize=5,cores=16,priority="effect")
## Note: Enrichments with large effect sizes may not be 
##             statistically significant.
top <- head(subset (mm1$enrichment_result,p.adjustMANOVA<0.05),50)
top <- top[,c(1,4:5)]
rownames(top) <- top[,1]
top[,1] = NULL
heatmap.2(as.matrix(top),trace="none",col=colfunc(25),scale="none", margins = c(6,25), cexRow=0.6, cexCol=0.8 )

as.matrix(top) |> kbl(caption="Top REACTOMEs in multi enrichment analysis at t0") |> kable_paper("hover", full_width = F)
Top REACTOMEs in multi enrichment analysis at t0
s.crp_t0_adj s.avb_t0_adj
Regulation of NFE2L2 gene expression 0.5831580 0.8540504
MECP2 regulates transcription of neuronal ligands 0.2836222 0.7573839
Phosphorylation of Emi1 0.2254696 0.7360349
NR1H2 & NR1H3 regulate gene expression to control bile acid homeostasis -0.0547762 0.7570586
Interleukin-21 signaling 0.2372210 0.7099553
Loss of MECP2 binding ability to the NCoR/SMRT complex 0.1218432 0.7078299
Phosphate bond hydrolysis by NTPDase proteins -0.7101669 0.0293528
NR1H2 & NR1H3 regulate gene expression linked to triglyceride lipolysis in adipose -0.0498605 0.6971964
POLB-Dependent Long Patch Base Excision Repair 0.1545604 0.6626338
SUMO is proteolytically processed -0.6491188 0.0691853
Disorders of Developmental Biology 0.1587519 0.6191555
Disorders of Nervous System Development 0.1587519 0.6191555
Loss of function of MECP2 in Rett syndrome 0.1587519 0.6191555
Pervasive developmental disorders 0.1587519 0.6191555
Eicosanoids 0.0688180 -0.6353033
Unwinding of DNA 0.3670433 0.5219142
Type I hemidesmosome assembly 0.1770309 0.5976352
NR1H2 & NR1H3 regulate gene expression linked to lipogenesis -0.1419701 0.5976580
Repression of WNT target genes 0.3720064 0.4706063
NOTCH4 Activation and Transmission of Signal to the Nucleus -0.5883440 -0.0466880
Small interfering RNA (siRNA) biogenesis -0.5641147 -0.1234009
NR1H3 & NR1H2 regulate gene expression linked to cholesterol transport and efflux -0.0718215 0.5723509
Interleukin-2 signaling 0.2021842 0.5265774
Beta-oxidation of pristanoyl-CoA -0.5468033 -0.1304149
TP53 Regulates Transcription of Genes Involved in G2 Cell Cycle Arrest 0.2702016 0.4912848
Cytochrome c-mediated apoptotic response -0.5450005 -0.1277781
Formation of annular gap junctions -0.3688655 0.4207685
Synthesis of pyrophosphates in the cytosol -0.4556765 0.2980743
Processing and activation of SUMO -0.5306221 0.1210430
Processive synthesis on the C-strand of the telomere 0.0634272 0.5353507
TGFBR3 regulates TGF-beta signaling -0.2281356 0.4854771
Glycosphingolipid transport -0.4073092 0.3441104
Removal of the Flap Intermediate from the C-strand -0.0132786 0.5311453
Cohesin Loading onto Chromatin -0.4495151 0.2808966
NR1H2 and NR1H3-mediated signaling -0.1034382 0.5173912
ATF6 (ATF6-alpha) activates chaperones -0.5136563 0.0868866
Regulation of MITF-M-dependent genes involved in lysosome biogenesis and autophagy -0.4836414 -0.1770328
Miscellaneous substrates 0.4991195 -0.1047937
SARS-CoV-2 modulates autophagy -0.3592571 0.3609372
Antigen Presentation: Folding, assembly and peptide loading of class I MHC -0.4649542 0.2040720
Response of EIF2AK1 (HRI) to heme deficiency -0.2431696 -0.4425591
Advanced glycosylation endproduct receptor signaling -0.4842926 -0.1356635
HDMs demethylate histones 0.0890679 0.4926871
MAPK3 (ERK1) activation -0.4897347 0.0997896
TGFBR3 PTM regulation -0.4738975 0.1511528
Fatty acids 0.3749085 -0.3264226
MASTL Facilitates Mitotic Progression -0.4835590 0.0666423
ATF6 (ATF6-alpha) activates chaperone genes -0.4699085 0.1211802
Establishment of Sister Chromatid Cohesion -0.4163669 0.2386743
HSF1-dependent transactivation 0.2537515 0.4033791
mitch_report(res=mm1,outfile="multireactome_t0_mitchreport.html",overwrite=TRUE)
## Dataset saved as " /tmp/RtmpDAn7eA/multireactome_t0_mitchreport.rds ".
## 
## 
## processing file: mitch.Rmd
## 1/34                             
## 2/34 [checklibraries]            
## 3/34                             
## 4/34 [peek]                      
## 5/34                             
## 6/34 [metrics]                   
## 7/34                             
## 8/34 [scatterplot]
## 9/34                             
## 10/34 [contourplot]
## 11/34                             
## 12/34 [input_geneset_metrics1]    
## 13/34                             
## 14/34 [input_geneset_metrics2]
## 15/34                             
## 16/34 [input_geneset_metrics3]
## 17/34                             
## 18/34 [echart1d]                  
## 19/34 [echart2d]                  
## 20/34                             
## 21/34 [heatmap]
## 22/34                             
## 23/34 [effectsize]                
## 24/34                             
## 25/34 [results_table]             
## 26/34                             
## 27/34 [results_table_complete]    
## 28/34                             
## 29/34 [detailed_geneset_reports1d]
## 30/34                             
## 31/34 [detailed_geneset_reports2d]
## 32/34                             
## 33/34 [session_info]              
## 34/34
## output file: /home/mark.ziemann@domain.internal.burnet.edu.au/projects/paddi_data/dge/mitch.knit.md
## /usr/bin/pandoc +RTS -K512m -RTS /home/mark.ziemann@domain.internal.burnet.edu.au/projects/paddi_data/dge/mitch.knit.md --to html4 --from markdown+autolink_bare_uris+tex_math_single_backslash --output /tmp/RtmpDAn7eA/mitch_report.html --lua-filter /usr/local/lib/R/site-library/rmarkdown/rmarkdown/lua/pagebreak.lua --lua-filter /usr/local/lib/R/site-library/rmarkdown/rmarkdown/lua/latex-div.lua --self-contained --variable bs3=TRUE --section-divs --template /usr/local/lib/R/site-library/rmarkdown/rmd/h/default.html --no-highlight --variable highlightjs=1 --variable theme=bootstrap --mathjax --variable 'mathjax-url=https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML' --include-in-header /tmp/RtmpDAn7eA/rmarkdown-str383e3962196fd3.html
## 
## Output created: /tmp/RtmpDAn7eA/mitch_report.html
## [1] TRUE
l1 <- list("crp_eos_adj"=crp_eos_adj, "avb_eos_adj"=avb_eos_adj)
m1 <- mitch_import(x=l1, DEtype="deseq2", geneTable=gt )
## Note: Mean no. genes in input = 22067
## Note: no. genes in output = 21999
## Note: estimated proportion of input genes in output = 0.997
mm1 <- mitch_calc(x=m1,genesets=reactome,minsetsize=5,cores=16,priority="effect")
## Note: Enrichments with large effect sizes may not be 
##             statistically significant.
top <- head(subset (mm1$enrichment_result,p.adjustMANOVA<0.05),50)
top <- top[,c(1,4:5)]
rownames(top) <- top[,1]
top[,1] = NULL
heatmap.2(as.matrix(top),trace="none",col=colfunc(25),scale="none", margins = c(6,25), cexRow=0.6, cexCol=0.8 )

as.matrix(top) |> kbl(caption="Top REACTOMEs in multi enrichment analysis at EOS") |> kable_paper("hover", full_width = F)
Top REACTOMEs in multi enrichment analysis at EOS
s.crp_eos_adj s.avb_eos_adj
FASTK family proteins regulate processing and stability of mitochondrial RNAs -0.7269910 -0.6869882
Formation of the ureteric bud -0.4916795 -0.8236064
Modulation by Mtb of host immune system -0.8262745 -0.4783947
Mitochondrial RNA degradation -0.6840302 -0.6015691
Defective binding of VWF variant to GPIb:IX:V -0.5438601 -0.7242894
Enhanced binding of GP1BA variant to VWF multimer:collagen -0.5438601 -0.7242894
Formation of ATP by chemiosmotic coupling -0.8530097 -0.2819965
Protein repair -0.4770912 -0.7398566
MECP2 regulates transcription of neuronal ligands 0.4675457 0.7330181
tRNA processing in the mitochondrion -0.6357072 -0.5660940
RNA Polymerase I Promoter Opening -0.6758658 -0.5063100
Peptide chain elongation -0.8425511 0.0139946
Formation of a pool of free 40S subunits -0.8424595 -0.0159496
Eukaryotic Translation Elongation -0.8344481 0.0176217
Viral mRNA Translation -0.8310749 -0.0004979
L13a-mediated translational silencing of Ceruloplasmin expression -0.8264242 -0.0539657
SUMO is conjugated to E1 (UBA2:SAE1) -0.7435119 -0.3562608
GTP hydrolysis and joining of the 60S ribosomal subunit -0.8220136 -0.0532062
Formation of xylulose-5-phosphate -0.6024007 0.5604438
SARS-CoV-1 modulates host translation machinery -0.8190467 -0.0051602
Cap-dependent Translation Initiation -0.8166167 -0.0453540
Eukaryotic Translation Initiation -0.8166167 -0.0453540
Formation of the ternary complex, and subsequently, the 43S complex -0.8125909 -0.0726780
Interleukin-21 signaling 0.6277601 0.5174271
Mitochondrial translation initiation -0.8069814 -0.0908860
rRNA processing in the mitochondrion -0.6804437 -0.4416951
SRP-dependent cotranslational protein targeting to membrane -0.8054049 -0.0880848
Eukaryotic Translation Termination -0.8098811 0.0138242
Post-transcriptional silencing by small RNAs 0.7119602 0.3857117
Packaging Of Telomere Ends -0.6982394 -0.4097680
Activation of the mRNA upon binding of the cap-binding complex and eIFs, and subsequent binding to 43S -0.7962023 -0.1222935
Selenocysteine synthesis -0.8045751 0.0205225
Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) -0.8021991 -0.0201674
Translation initiation complex formation -0.7930814 -0.1213222
Ribosomal scanning and start codon recognition -0.7914203 -0.1226267
Mitochondrial translation elongation -0.7937154 -0.0899042
Mitochondrial translation termination -0.7834619 -0.0900117
Phosphate bond hydrolysis by NUDT proteins -0.7494543 -0.2234319
Mitochondrial translation -0.7762521 -0.0838498
Regulation of CDH11 mRNA translation by microRNAs 0.6300191 0.4580055
Regulation of NPAS4 mRNA translation 0.6300191 0.4580055
Replacement of protamines by nucleosomes in the male pronucleus -0.5182949 -0.5802574
Complex III assembly -0.7620725 -0.0632469
Response of EIF2AK4 (GCN2) to amino acid deficiency -0.7641189 -0.0164665
RUNX1 regulates transcription of genes involved in BCR signaling 0.3380166 -0.6845663
Arachidonate production from DAG -0.7412203 -0.1408020
CD163 mediating an anti-inflammatory response 0.0320449 -0.7518569
Activated PKN1 stimulates transcription of AR (androgen receptor) regulated genes KLK2 and KLK3 -0.5815028 -0.4711611
CD22 mediated BCR regulation -0.5349739 -0.5128959
Regulation of NPAS4 gene expression 0.6083070 0.4176658
mitch_report(res=mm1,outfile="multireactome_eos_mitchreport.html",overwrite=TRUE)
## Dataset saved as " /tmp/RtmpDAn7eA/multireactome_eos_mitchreport.rds ".
## 
## 
## processing file: mitch.Rmd
## 1/34                             
## 2/34 [checklibraries]            
## 3/34                             
## 4/34 [peek]                      
## 5/34                             
## 6/34 [metrics]                   
## 7/34                             
## 8/34 [scatterplot]
## 9/34                             
## 10/34 [contourplot]
## 11/34                             
## 12/34 [input_geneset_metrics1]    
## 13/34                             
## 14/34 [input_geneset_metrics2]
## 15/34                             
## 16/34 [input_geneset_metrics3]
## 17/34                             
## 18/34 [echart1d]                  
## 19/34 [echart2d]                  
## 20/34                             
## 21/34 [heatmap]
## 22/34                             
## 23/34 [effectsize]                
## 24/34                             
## 25/34 [results_table]             
## 26/34                             
## 27/34 [results_table_complete]    
## 28/34                             
## 29/34 [detailed_geneset_reports1d]
## 30/34                             
## 31/34 [detailed_geneset_reports2d]
## 32/34                             
## 33/34 [session_info]              
## 34/34
## output file: /home/mark.ziemann@domain.internal.burnet.edu.au/projects/paddi_data/dge/mitch.knit.md
## /usr/bin/pandoc +RTS -K512m -RTS /home/mark.ziemann@domain.internal.burnet.edu.au/projects/paddi_data/dge/mitch.knit.md --to html4 --from markdown+autolink_bare_uris+tex_math_single_backslash --output /tmp/RtmpDAn7eA/mitch_report.html --lua-filter /usr/local/lib/R/site-library/rmarkdown/rmarkdown/lua/pagebreak.lua --lua-filter /usr/local/lib/R/site-library/rmarkdown/rmarkdown/lua/latex-div.lua --self-contained --variable bs3=TRUE --section-divs --template /usr/local/lib/R/site-library/rmarkdown/rmd/h/default.html --no-highlight --variable highlightjs=1 --variable theme=bootstrap --mathjax --variable 'mathjax-url=https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML' --include-in-header /tmp/RtmpDAn7eA/rmarkdown-str383e3911f2d1b7.html
## 
## Output created: /tmp/RtmpDAn7eA/mitch_report.html
## [1] TRUE
l1 <- list("crp_pod1_adj"=crp_pod1_adj, "avb_pod1_adj"=avb_pod1_adj)
m1 <- mitch_import(x=l1, DEtype="deseq2", geneTable=gt )
## Note: Mean no. genes in input = 21313
## Note: no. genes in output = 21253
## Note: estimated proportion of input genes in output = 0.997
mm1 <- mitch_calc(x=m1,genesets=reactome,minsetsize=5,cores=16,priority="effect")
## Note: Enrichments with large effect sizes may not be 
##             statistically significant.
top <- head(subset (mm1$enrichment_result,p.adjustMANOVA<0.05),50)
top <- top[,c(1,4:5)]
rownames(top) <- top[,1]
top[,1] = NULL
heatmap.2(as.matrix(top),trace="none",col=colfunc(25),scale="none", margins = c(6,25), cexRow=0.6, cexCol=0.8 )

as.matrix(top) |> kbl(caption="Top REACTOMEs in multi enrichment analysis at POD1") |> kable_paper("hover", full_width = F)
Top REACTOMEs in multi enrichment analysis at POD1
s.crp_pod1_adj s.avb_pod1_adj
Insulin-like Growth Factor-2 mRNA Binding Proteins (IGF2BPs/IMPs/VICKZs) bind RNA 0.8140130 0.6102195
Response to metal ions 0.7739132 0.6563593
G2/M DNA replication checkpoint 0.6916039 0.6744917
Fructose metabolism -0.5808825 -0.7031643
CD163 mediating an anti-inflammatory response 0.8726171 -0.0579077
Butyrophilin (BTN) family interactions -0.5751165 -0.6249212
Activation of NIMA Kinases NEK9, NEK6, NEK7 0.4563548 0.7084224
Regulation of IFNA/IFNB signaling 0.4407278 0.6790170
Type I hemidesmosome assembly 0.5655448 0.5740998
Activation of caspases through apoptosome-mediated cleavage 0.1436752 0.7807220
Inhibition of Signaling by Overexpressed EGFR 0.7530497 -0.2023532
Signaling by Overexpressed Wild-Type EGFR in Cancer 0.7530497 -0.2023532
Establishment of Sister Chromatid Cohesion 0.3437615 0.6894745
Maturation of protein 3a_9683673 0.4537124 0.6123873
Maturation of protein 3a_9694719 0.4537124 0.6123873
Neurotransmitter clearance -0.1916663 -0.7300011
Synthesis of diphthamide-EEF2 -0.6367969 -0.3932337
NFE2L2 regulates pentose phosphate pathway genes 0.7010826 0.2181690
Formation of a pool of free 40S subunits -0.6857959 -0.2577677
Peptide chain elongation -0.6830681 -0.2626871
Interleukin-21 signaling 0.3206029 0.6566665
Mitotic Telophase/Cytokinesis 0.4479647 0.5647182
Eukaryotic Translation Elongation -0.6712218 -0.2539332
Selenocysteine synthesis -0.6661147 -0.2476521
SARS-CoV-1 modulates host translation machinery -0.6564731 -0.2660393
Viral mRNA Translation -0.6576155 -0.2320673
Eukaryotic Translation Termination -0.6545111 -0.2318704
EGFR interacts with phospholipase C-gamma 0.6545238 -0.2238120
Platelet sensitization by LDL 0.4364788 0.5273697
Interleukin-6 signaling 0.3321000 0.5967330
Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) -0.6370369 -0.2348048
L13a-mediated translational silencing of Ceruloplasmin expression -0.6423205 -0.2190744
Formation of the ternary complex, and subsequently, the 43S complex -0.6435482 -0.2150500
GTP hydrolysis and joining of the 60S ribosomal subunit -0.6301542 -0.2144223
Cap-dependent Translation Initiation -0.6262694 -0.2224674
Eukaryotic Translation Initiation -0.6262694 -0.2224674
Cohesin Loading onto Chromatin 0.3900391 0.5317705
N-Glycan antennae elongation 0.4727885 0.4595201
SMAC (DIABLO) binds to IAPs 0.0041151 0.6410081
SMAC(DIABLO)-mediated dissociation of IAP:caspase complexes 0.0041151 0.6410081
SMAC, XIAP-regulated apoptotic response 0.0041151 0.6410081
Common Pathway of Fibrin Clot Formation 0.4487614 0.4555628
rRNA modification in the mitochondrion -0.6392092 0.0022123
Regulation of TP53 Activity through Association with Co-factors -0.2347921 -0.5929163
Condensation of Prometaphase Chromosomes 0.2865763 0.5655434
Activation of the mRNA upon binding of the cap-binding complex and eIFs, and subsequent binding to 43S -0.5977691 -0.2064575
Translation initiation complex formation -0.5923730 -0.1939364
Regulation of IFNG signaling 0.3808694 0.4926046
Response of EIF2AK4 (GCN2) to amino acid deficiency -0.5868331 -0.2048126
Interaction between L1 and Ankyrins 0.4903407 0.3804154
mitch_report(res=mm1,outfile="multireactome_eos_mitchreport.html",overwrite=TRUE)
## Note: overwriting existing report
## Dataset saved as " /tmp/RtmpDAn7eA/multireactome_eos_mitchreport.rds ".
## 
## 
## processing file: mitch.Rmd
## 1/34                             
## 2/34 [checklibraries]            
## 3/34                             
## 4/34 [peek]                      
## 5/34                             
## 6/34 [metrics]                   
## 7/34                             
## 8/34 [scatterplot]
## 9/34                             
## 10/34 [contourplot]
## 11/34                             
## 12/34 [input_geneset_metrics1]    
## 13/34                             
## 14/34 [input_geneset_metrics2]
## 15/34                             
## 16/34 [input_geneset_metrics3]
## 17/34                             
## 18/34 [echart1d]                  
## 19/34 [echart2d]                  
## 20/34                             
## 21/34 [heatmap]
## 22/34                             
## 23/34 [effectsize]                
## 24/34                             
## 25/34 [results_table]             
## 26/34                             
## 27/34 [results_table_complete]    
## 28/34                             
## 29/34 [detailed_geneset_reports1d]
## 30/34                             
## 31/34 [detailed_geneset_reports2d]
## 32/34                             
## 33/34 [session_info]              
## 34/34
## output file: /home/mark.ziemann@domain.internal.burnet.edu.au/projects/paddi_data/dge/mitch.knit.md
## /usr/bin/pandoc +RTS -K512m -RTS /home/mark.ziemann@domain.internal.burnet.edu.au/projects/paddi_data/dge/mitch.knit.md --to html4 --from markdown+autolink_bare_uris+tex_math_single_backslash --output /tmp/RtmpDAn7eA/mitch_report.html --lua-filter /usr/local/lib/R/site-library/rmarkdown/rmarkdown/lua/pagebreak.lua --lua-filter /usr/local/lib/R/site-library/rmarkdown/rmarkdown/lua/latex-div.lua --self-contained --variable bs3=TRUE --section-divs --template /usr/local/lib/R/site-library/rmarkdown/rmd/h/default.html --no-highlight --variable highlightjs=1 --variable theme=bootstrap --mathjax --variable 'mathjax-url=https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML' --include-in-header /tmp/RtmpDAn7eA/rmarkdown-str383e39778898ae.html
## 
## Output created: /tmp/RtmpDAn7eA/mitch_report.html
## [1] TRUE

Individual contrast analysis stratified

  • crp_t0_a_adj
  • crp_t0_b_adj
  • crp_eos_a_adj
  • crp_eos_b_adj
  • crp_pod1_a_adj
  • crp_pod1_b_adj
  • avb_crplo_t0_adj
  • avb_crphi_t0_adj
  • avb_crplo_eos_adj
  • avb_crphi_eos_adj
  • avb_crplo_pod1_adj
  • avb_crphi_pod1_adj
de <- crp_t0_a_adj
myname <- "crp_t0_a_adj"

m <- mitch_import(x=de, DEtype="deseq2", geneTable=gt )
## The input is a single dataframe; one contrast only. Converting
##         it to a list for you.
## Note: Mean no. genes in input = 21935
## Note: no. genes in output = 21870
## Note: estimated proportion of input genes in output = 0.997
mres <- mitch_calc(x=m,genesets=reactome,minsetsize=5,cores=16,priority="effect")
## Note: Enrichments with large effect sizes may not be
##             statistically significant.
mtop <- head(subset (mres$enrichment_result,p.adjustANOVA<0.05),30)
mtop |> kbl(caption=paste(myname,"REACTOME")) |> kable_paper("hover", full_width = F)
crp_t0_a_adj REACTOME
set setSize pANOVA s.dist p.adjustANOVA
943 Modulation by Mtb of host immune system 7 0.0001742 -0.8191726 0.0009458
1125 Peptide chain elongation 87 0.0000000 -0.8159484 0.0000000
879 Maturation of spike protein_9683686 5 0.0017668 -0.8074000 0.0071527
1862 Viral mRNA Translation 87 0.0000000 -0.8061665 0.0000000
547 Formation of ATP by chemiosmotic coupling 20 0.0000000 -0.7990618 0.0000000
492 Eukaryotic Translation Elongation 92 0.0000000 -0.7971197 0.0000000
556 Formation of a pool of free 40S subunits 99 0.0000000 -0.7868557 0.0000000
1452 SARS-CoV-1 modulates host translation machinery 36 0.0000000 -0.7859480 0.0000000
494 Eukaryotic Translation Termination 91 0.0000000 -0.7823269 0.0000000
659 Glycosphingolipid transport 7 0.0004072 -0.7715383 0.0020381
1512 Selenocysteine synthesis 91 0.0000000 -0.7670394 0.0000000
1037 Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) 93 0.0000000 -0.7653626 0.0000000
1647 Sulfide oxidation to sulfate 5 0.0032844 -0.7591036 0.0120784
1485 SRP-dependent cotranslational protein targeting to membrane 110 0.0000000 -0.7565149 0.0000000
812 L13a-mediated translational silencing of Ceruloplasmin expression 109 0.0000000 -0.7511498 0.0000000
557 Formation of annular gap junctions 10 0.0000428 -0.7470906 0.0002572
616 GTP hydrolysis and joining of the 60S ribosomal subunit 110 0.0000000 -0.7368549 0.0000000
150 Beta oxidation of hexanoyl-CoA to butanoyl-CoA 5 0.0048371 -0.7275829 0.0163527
1141 Phosphate bond hydrolysis by NUDT proteins 7 0.0009239 -0.7229631 0.0040834
218 Cap-dependent Translation Initiation 117 0.0000000 -0.7219937 0.0000000
493 Eukaryotic Translation Initiation 117 0.0000000 -0.7219937 0.0000000
1431 Response of EIF2AK4 (GCN2) to amino acid deficiency 99 0.0000000 -0.7211841 0.0000000
569 Formation of the ternary complex, and subsequently, the 43S complex 51 0.0000000 -0.7012210 0.0000000
72 Activation of the mRNA upon binding of the cap-binding complex and eIFs, and subsequent binding to 43S 59 0.0000000 -0.6828999 0.0000000
1799 Translation initiation complex formation 58 0.0000000 -0.6788402 0.0000000
1443 Ribosomal scanning and start codon recognition 58 0.0000000 -0.6711538 0.0000000
1491 SUMO is conjugated to E1 (UBA2:SAE1) 5 0.0095950 -0.6688223 0.0286217
577 Fructose metabolism 7 0.0022264 -0.6674355 0.0087917
1511 Selenoamino acid metabolism 114 0.0000000 -0.6654611 0.0000000
1185 Prevention of phagosomal-lysosomal fusion 9 0.0005887 -0.6614875 0.0027806
vec <- mtop$s.dist
names(vec) <- mtop$set
vec <- sort(vec)
par( mar = c(5.1, 25.1, 4.1, 2.1) )
barplot(vec,horiz=TRUE,las=1,cex.names=0.7,xlab="ES",main=myname)

par( mar = c(5.1, 4.1, 4.1, 2.1) )
mitch_report(res=mres,outfile=paste(myname,"_mitchreport.html",sep=""),overwrite=TRUE)
## Note: overwriting existing report
## Dataset saved as " /tmp/RtmpDAn7eA/crp_t0_a_adj_mitchreport.rds ".
## 
## 
## processing file: mitch.Rmd
## 1/34                             
## 2/34 [checklibraries]            
## 3/34                             
## 4/34 [peek]                      
## 5/34                             
## 6/34 [metrics]                   
## 7/34                             
## 8/34 [scatterplot]
## 9/34                             
## 10/34 [contourplot]               
## 11/34                             
## 12/34 [input_geneset_metrics1]    
## 13/34                             
## 14/34 [input_geneset_metrics2]
## 15/34                             
## 16/34 [input_geneset_metrics3]
## 17/34                             
## 18/34 [echart1d]                  
## 19/34 [echart2d]                  
## 20/34                             
## 21/34 [heatmap]                   
## 22/34                             
## 23/34 [effectsize]                
## 24/34                             
## 25/34 [results_table]             
## 26/34                             
## 27/34 [results_table_complete]    
## 28/34                             
## 29/34 [detailed_geneset_reports1d]
## 30/34                             
## 31/34 [detailed_geneset_reports2d]
## 32/34                             
## 33/34 [session_info]              
## 34/34
## output file: /home/mark.ziemann@domain.internal.burnet.edu.au/projects/paddi_data/dge/mitch.knit.md
## /usr/bin/pandoc +RTS -K512m -RTS /home/mark.ziemann@domain.internal.burnet.edu.au/projects/paddi_data/dge/mitch.knit.md --to html4 --from markdown+autolink_bare_uris+tex_math_single_backslash --output /tmp/RtmpDAn7eA/mitch_report.html --lua-filter /usr/local/lib/R/site-library/rmarkdown/rmarkdown/lua/pagebreak.lua --lua-filter /usr/local/lib/R/site-library/rmarkdown/rmarkdown/lua/latex-div.lua --self-contained --variable bs3=TRUE --section-divs --template /usr/local/lib/R/site-library/rmarkdown/rmd/h/default.html --no-highlight --variable highlightjs=1 --variable theme=bootstrap --mathjax --variable 'mathjax-url=https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML' --include-in-header /tmp/RtmpDAn7eA/rmarkdown-str383e391cfc1845.html
## 
## Output created: /tmp/RtmpDAn7eA/mitch_report.html
## [1] TRUE
de <- crp_t0_b_adj
myname <- "crp_t0_b_adj"

m <- mitch_import(x=de, DEtype="deseq2", geneTable=gt )
## The input is a single dataframe; one contrast only. Converting
##         it to a list for you.
## Note: Mean no. genes in input = 21935
## Note: no. genes in output = 21870
## Note: estimated proportion of input genes in output = 0.997
mres <- mitch_calc(x=m,genesets=reactome,minsetsize=5,cores=16,priority="effect")
## Note: Enrichments with large effect sizes may not be
##             statistically significant.
mtop <- head(subset (mres$enrichment_result,p.adjustANOVA<0.05),30)
mtop |> kbl(caption=paste(myname,"REACTOME")) |> kable_paper("hover", full_width = F)
crp_t0_b_adj REACTOME
set setSize pANOVA s.dist p.adjustANOVA
487 Establishment of Sister Chromatid Cohesion 11 0.0000674 -0.6938394 0.0108226
280 Cohesin Loading onto Chromatin 10 0.0002114 -0.6765142 0.0271628
1675 Synthesis of PIPs at the late endosome membrane 11 0.0003484 -0.6226643 0.0318253
1674 Synthesis of PIPs at the early endosome membrane 16 0.0000300 -0.6025670 0.0082683
1625 Signaling by cytosolic FGFR1 fusion mutants 18 0.0006981 -0.4615189 0.0343955
724 Impaired BRCA2 binding to PALB2 24 0.0002602 -0.4305937 0.0294892
511 FGFR1 mutant receptor activation 25 0.0007140 -0.3909636 0.0343955
359 Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of BRCA1 binding function 25 0.0008240 -0.3863969 0.0345167
360 Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of BRCA2/RAD51/RAD51C binding function 25 0.0008240 -0.3863969 0.0345167
369 Defective homologous recombination repair (HRR) due to BRCA1 loss of function 25 0.0008240 -0.3863969 0.0345167
371 Defective homologous recombination repair (HRR) due to PALB2 loss of function 25 0.0008240 -0.3863969 0.0345167
1560 Signaling by FGFR1 in disease 32 0.0001903 -0.3810903 0.0271628
1818 Transport of Ribonucleoproteins into the Host Nucleus 32 0.0013713 -0.3268815 0.0489361
725 Impaired BRCA2 binding to RAD51 35 0.0011148 -0.3183604 0.0421228
1184 Presynaptic phase of homologous DNA pairing and strand exchange 40 0.0005816 -0.3142945 0.0343955
180 CD22 mediated BCR regulation 59 0.0000360 0.3109448 0.0082683
370 Defective homologous recombination repair (HRR) due to BRCA2 loss of function 41 0.0006273 -0.3085949 0.0343955
407 Diseases of DNA Double-Strand Break Repair 41 0.0006273 -0.3085949 0.0343955
990 NS1 Mediated Effects on Host Pathways 40 0.0007562 -0.3077462 0.0345167
1676 Synthesis of PIPs at the plasma membrane 52 0.0002070 -0.2973903 0.0271628
700 Homologous DNA Pairing and Strand Exchange 43 0.0007509 -0.2970068 0.0345167
720 ISG15 antiviral mechanism 72 0.0000229 -0.2885535 0.0082683
1508 Scavenging of heme from plasma 71 0.0000475 0.2791206 0.0083229
661 Golgi Associated Vesicle Biogenesis 55 0.0004045 -0.2756860 0.0324818
408 Diseases of DNA repair 51 0.0013386 -0.2596037 0.0486702
273 Classical antibody-mediated complement activation 70 0.0004721 0.2416199 0.0343955
742 Initial triggering of complement 80 0.0002446 0.2371696 0.0294596
307 Creation of C4 and C2 activators 72 0.0006709 0.2317873 0.0343955
598 G2/M DNA damage checkpoint 66 0.0012625 -0.2294783 0.0467855
1381 Regulation of TP53 Activity through Phosphorylation 88 0.0003955 -0.2184821 0.0324818
vec <- mtop$s.dist
names(vec) <- mtop$set
vec <- sort(vec)
par( mar = c(5.1, 25.1, 4.1, 2.1) )
barplot(vec,horiz=TRUE,las=1,cex.names=0.7,xlab="ES",main=myname)

par( mar = c(5.1, 4.1, 4.1, 2.1) )
mitch_report(res=mres,outfile=paste(myname,"_mitchreport.html",sep=""),overwrite=TRUE)
## Note: overwriting existing report
## Dataset saved as " /tmp/RtmpDAn7eA/crp_t0_b_adj_mitchreport.rds ".
## 
## 
## processing file: mitch.Rmd
## 1/34                             
## 2/34 [checklibraries]            
## 3/34                             
## 4/34 [peek]                      
## 5/34                             
## 6/34 [metrics]                   
## 7/34                             
## 8/34 [scatterplot]
## 9/34                             
## 10/34 [contourplot]               
## 11/34                             
## 12/34 [input_geneset_metrics1]    
## 13/34                             
## 14/34 [input_geneset_metrics2]
## 15/34                             
## 16/34 [input_geneset_metrics3]
## 17/34                             
## 18/34 [echart1d]                  
## 19/34 [echart2d]                  
## 20/34                             
## 21/34 [heatmap]                   
## 22/34                             
## 23/34 [effectsize]                
## 24/34                             
## 25/34 [results_table]             
## 26/34                             
## 27/34 [results_table_complete]    
## 28/34                             
## 29/34 [detailed_geneset_reports1d]
## 30/34                             
## 31/34 [detailed_geneset_reports2d]
## 32/34                             
## 33/34 [session_info]              
## 34/34
## output file: /home/mark.ziemann@domain.internal.burnet.edu.au/projects/paddi_data/dge/mitch.knit.md
## /usr/bin/pandoc +RTS -K512m -RTS /home/mark.ziemann@domain.internal.burnet.edu.au/projects/paddi_data/dge/mitch.knit.md --to html4 --from markdown+autolink_bare_uris+tex_math_single_backslash --output /tmp/RtmpDAn7eA/mitch_report.html --lua-filter /usr/local/lib/R/site-library/rmarkdown/rmarkdown/lua/pagebreak.lua --lua-filter /usr/local/lib/R/site-library/rmarkdown/rmarkdown/lua/latex-div.lua --self-contained --variable bs3=TRUE --section-divs --template /usr/local/lib/R/site-library/rmarkdown/rmd/h/default.html --no-highlight --variable highlightjs=1 --variable theme=bootstrap --mathjax --variable 'mathjax-url=https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML' --include-in-header /tmp/RtmpDAn7eA/rmarkdown-str383e397b92e927.html
## 
## Output created: /tmp/RtmpDAn7eA/mitch_report.html
## [1] TRUE
de <- crp_eos_a_adj
myname <- "crp_eos_a_adj"

m <- mitch_import(x=de, DEtype="deseq2", geneTable=gt )
## The input is a single dataframe; one contrast only. Converting
##         it to a list for you.
## Note: Mean no. genes in input = 22067
## Note: no. genes in output = 21999
## Note: estimated proportion of input genes in output = 0.997
mres <- mitch_calc(x=m,genesets=reactome,minsetsize=5,cores=16,priority="effect")
## Note: Enrichments with large effect sizes may not be
##             statistically significant.
mtop <- head(subset (mres$enrichment_result,p.adjustANOVA<0.05),30)
mtop |> kbl(caption=paste(myname,"REACTOME")) |> kable_paper("hover", full_width = F)
crp_eos_a_adj REACTOME
set setSize pANOVA s.dist p.adjustANOVA
119 Arachidonate production from DAG 5 0.0015506 -0.8172593 0.0107758
550 Formation of ATP by chemiosmotic coupling 20 0.0000000 -0.8137176 0.0000000
860 MET activates PI3K/AKT signaling 5 0.0026253 0.7768482 0.0169034
1093 PI3K events in ERBB4 signaling 6 0.0015331 0.7468437 0.0106932
873 Malate-aspartate shuttle 8 0.0004347 -0.7181915 0.0036836
1014 Negative regulation of activity of TFAP2 (AP-2) family transcription factors 6 0.0023569 -0.7168645 0.0153837
1669 Synthesis of Ketone Bodies 6 0.0027733 -0.7052395 0.0176253
1213 Purine ribonucleoside monophosphate biosynthesis 9 0.0003046 -0.6950836 0.0026722
882 Maturation of spike protein_9683686 5 0.0071625 -0.6944076 0.0385460
811 Ketone body metabolism 8 0.0007271 -0.6898390 0.0057811
933 Mitochondrial translation elongation 90 0.0000000 -0.6894478 0.0000000
1127 Peptide chain elongation 88 0.0000000 -0.6817362 0.0000000
934 Mitochondrial translation initiation 90 0.0000000 -0.6774527 0.0000000
1867 Viral mRNA Translation 88 0.0000000 -0.6690817 0.0000000
310 Cristae formation 33 0.0000000 -0.6654306 0.0000000
495 Eukaryotic Translation Elongation 93 0.0000000 -0.6644667 0.0000000
291 Complex III assembly 23 0.0000000 -0.6616111 0.0000009
935 Mitochondrial translation termination 90 0.0000000 -0.6603892 0.0000000
497 Eukaryotic Translation Termination 92 0.0000000 -0.6569322 0.0000000
1487 SRP-dependent cotranslational protein targeting to membrane 111 0.0000000 -0.6547592 0.0000000
559 Formation of a pool of free 40S subunits 100 0.0000000 -0.6511485 0.0000000
1514 Selenocysteine synthesis 92 0.0000000 -0.6490937 0.0000000
1454 SARS-CoV-1 modulates host translation machinery 36 0.0000000 -0.6478269 0.0000000
1666 Synthesis of GDP-mannose 6 0.0060170 -0.6475091 0.0330252
1039 Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) 94 0.0000000 -0.6441316 0.0000000
932 Mitochondrial translation 96 0.0000000 -0.6409900 0.0000000
930 Mitochondrial protein import 63 0.0000000 -0.6386993 0.0000000
1055 Nucleotide biosynthesis 12 0.0001578 -0.6298419 0.0014947
815 L13a-mediated translational silencing of Ceruloplasmin expression 110 0.0000000 -0.6233642 0.0000000
1415 Release of apoptotic factors from the mitochondria 6 0.0084755 -0.6205611 0.0441514
vec <- mtop$s.dist
names(vec) <- mtop$set
vec <- sort(vec)
par( mar = c(5.1, 25.1, 4.1, 2.1) )
barplot(vec,horiz=TRUE,las=1,cex.names=0.7,xlab="ES",main=myname)

par( mar = c(5.1, 4.1, 4.1, 2.1) )
mitch_report(res=mres,outfile=paste(myname,"_mitchreport.html",sep=""),overwrite=TRUE)
## Note: overwriting existing report
## Dataset saved as " /tmp/RtmpDAn7eA/crp_eos_a_adj_mitchreport.rds ".
## 
## 
## processing file: mitch.Rmd
## 1/34                             
## 2/34 [checklibraries]            
## 3/34                             
## 4/34 [peek]                      
## 5/34                             
## 6/34 [metrics]                   
## 7/34                             
## 8/34 [scatterplot]
## 9/34                             
## 10/34 [contourplot]               
## 11/34                             
## 12/34 [input_geneset_metrics1]    
## 13/34                             
## 14/34 [input_geneset_metrics2]
## 15/34                             
## 16/34 [input_geneset_metrics3]
## 17/34                             
## 18/34 [echart1d]                  
## 19/34 [echart2d]                  
## 20/34                             
## 21/34 [heatmap]                   
## 22/34                             
## 23/34 [effectsize]                
## 24/34                             
## 25/34 [results_table]             
## 26/34                             
## 27/34 [results_table_complete]    
## 28/34                             
## 29/34 [detailed_geneset_reports1d]
## 30/34                             
## 31/34 [detailed_geneset_reports2d]
## 32/34                             
## 33/34 [session_info]              
## 34/34
## output file: /home/mark.ziemann@domain.internal.burnet.edu.au/projects/paddi_data/dge/mitch.knit.md
## /usr/bin/pandoc +RTS -K512m -RTS /home/mark.ziemann@domain.internal.burnet.edu.au/projects/paddi_data/dge/mitch.knit.md --to html4 --from markdown+autolink_bare_uris+tex_math_single_backslash --output /tmp/RtmpDAn7eA/mitch_report.html --lua-filter /usr/local/lib/R/site-library/rmarkdown/rmarkdown/lua/pagebreak.lua --lua-filter /usr/local/lib/R/site-library/rmarkdown/rmarkdown/lua/latex-div.lua --self-contained --variable bs3=TRUE --section-divs --template /usr/local/lib/R/site-library/rmarkdown/rmd/h/default.html --no-highlight --variable highlightjs=1 --variable theme=bootstrap --mathjax --variable 'mathjax-url=https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML' --include-in-header /tmp/RtmpDAn7eA/rmarkdown-str383e39ffbd777.html
## 
## Output created: /tmp/RtmpDAn7eA/mitch_report.html
## [1] TRUE
de <- crp_eos_b_adj
myname <- "crp_eos_b_adj"

m <- mitch_import(x=de, DEtype="deseq2", geneTable=gt )
## The input is a single dataframe; one contrast only. Converting
##         it to a list for you.
## Note: Mean no. genes in input = 22067
## Note: no. genes in output = 21999
## Note: estimated proportion of input genes in output = 0.997
mres <- mitch_calc(x=m,genesets=reactome,minsetsize=5,cores=16,priority="effect")
## Note: Enrichments with large effect sizes may not be
##             statistically significant.
mtop <- head(subset (mres$enrichment_result,p.adjustANOVA<0.05),30)
mtop |> kbl(caption=paste(myname,"REACTOME")) |> kable_paper("hover", full_width = F)
crp_eos_b_adj REACTOME
set setSize pANOVA s.dist p.adjustANOVA
1127 Peptide chain elongation 88 0.0000000 -0.8467717 0.0000000
559 Formation of a pool of free 40S subunits 100 0.0000000 -0.8436330 0.0000000
495 Eukaryotic Translation Elongation 93 0.0000000 -0.8382738 0.0000000
1867 Viral mRNA Translation 88 0.0000000 -0.8311226 0.0000000
1454 SARS-CoV-1 modulates host translation machinery 36 0.0000000 -0.8201015 0.0000000
1514 Selenocysteine synthesis 92 0.0000000 -0.8080701 0.0000000
815 L13a-mediated translational silencing of Ceruloplasmin expression 110 0.0000000 -0.8017651 0.0000000
220 Cap-dependent Translation Initiation 118 0.0000000 -0.8002121 0.0000000
496 Eukaryotic Translation Initiation 118 0.0000000 -0.8002121 0.0000000
619 GTP hydrolysis and joining of the 60S ribosomal subunit 111 0.0000000 -0.7993759 0.0000000
497 Eukaryotic Translation Termination 92 0.0000000 -0.7940374 0.0000000
572 Formation of the ternary complex, and subsequently, the 43S complex 51 0.0000000 -0.7819498 0.0000000
1143 Phosphate bond hydrolysis by NUDT proteins 7 0.0003960 -0.7731383 0.0032699
1039 Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) 94 0.0000000 -0.7669802 0.0000000
1433 Response of EIF2AK4 (GCN2) to amino acid deficiency 100 0.0000000 -0.7547760 0.0000000
1487 SRP-dependent cotranslational protein targeting to membrane 111 0.0000000 -0.7528227 0.0000000
73 Activation of the mRNA upon binding of the cap-binding complex and eIFs, and subsequent binding to 43S 59 0.0000000 -0.7360382 0.0000000
360 Defective GALNT3 causes HFTC 9 0.0001379 0.7336769 0.0013254
1445 Ribosomal scanning and start codon recognition 58 0.0000000 -0.7322396 0.0000000
1803 Translation initiation complex formation 58 0.0000000 -0.7315512 0.0000000
1891 Zygotic genome activation (ZGA) 5 0.0048468 0.7274166 0.0269079
550 Formation of ATP by chemiosmotic coupling 20 0.0000000 -0.7152782 0.0000005
1363 Regulation of NFE2L2 gene expression 8 0.0004992 0.7106657 0.0039527
934 Mitochondrial translation initiation 90 0.0000000 -0.6965012 0.0000000
1513 Selenoamino acid metabolism 115 0.0000000 -0.6956697 0.0000000
1304 RUNX1 regulates transcription of genes involved in WNT signaling 5 0.0072660 0.6931709 0.0364620
1460 SARS-CoV-2 modulates host translation machinery 49 0.0000000 -0.6889368 0.0000000
1333 Reelin signalling pathway 5 0.0082385 0.6822588 0.0393979
935 Mitochondrial translation termination 90 0.0000000 -0.6821002 0.0000000
933 Mitochondrial translation elongation 90 0.0000000 -0.6802714 0.0000000
vec <- mtop$s.dist
names(vec) <- mtop$set
vec <- sort(vec)
par( mar = c(5.1, 25.1, 4.1, 2.1) )
barplot(vec,horiz=TRUE,las=1,cex.names=0.7,xlab="ES",main=myname)

par( mar = c(5.1, 4.1, 4.1, 2.1) )
mitch_report(res=mres,outfile=paste(myname,"_mitchreport.html",sep=""),overwrite=TRUE)
## Note: overwriting existing report
## Dataset saved as " /tmp/RtmpDAn7eA/crp_eos_b_adj_mitchreport.rds ".
## 
## 
## processing file: mitch.Rmd
## 1/34                             
## 2/34 [checklibraries]            
## 3/34                             
## 4/34 [peek]                      
## 5/34                             
## 6/34 [metrics]                   
## 7/34                             
## 8/34 [scatterplot]
## 9/34                             
## 10/34 [contourplot]               
## 11/34                             
## 12/34 [input_geneset_metrics1]    
## 13/34                             
## 14/34 [input_geneset_metrics2]
## 15/34                             
## 16/34 [input_geneset_metrics3]
## 17/34                             
## 18/34 [echart1d]                  
## 19/34 [echart2d]                  
## 20/34                             
## 21/34 [heatmap]                   
## 22/34                             
## 23/34 [effectsize]                
## 24/34                             
## 25/34 [results_table]             
## 26/34                             
## 27/34 [results_table_complete]    
## 28/34                             
## 29/34 [detailed_geneset_reports1d]
## 30/34                             
## 31/34 [detailed_geneset_reports2d]
## 32/34                             
## 33/34 [session_info]              
## 34/34
## output file: /home/mark.ziemann@domain.internal.burnet.edu.au/projects/paddi_data/dge/mitch.knit.md
## /usr/bin/pandoc +RTS -K512m -RTS /home/mark.ziemann@domain.internal.burnet.edu.au/projects/paddi_data/dge/mitch.knit.md --to html4 --from markdown+autolink_bare_uris+tex_math_single_backslash --output /tmp/RtmpDAn7eA/mitch_report.html --lua-filter /usr/local/lib/R/site-library/rmarkdown/rmarkdown/lua/pagebreak.lua --lua-filter /usr/local/lib/R/site-library/rmarkdown/rmarkdown/lua/latex-div.lua --self-contained --variable bs3=TRUE --section-divs --template /usr/local/lib/R/site-library/rmarkdown/rmd/h/default.html --no-highlight --variable highlightjs=1 --variable theme=bootstrap --mathjax --variable 'mathjax-url=https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML' --include-in-header /tmp/RtmpDAn7eA/rmarkdown-str383e393a9c79c3.html
## 
## Output created: /tmp/RtmpDAn7eA/mitch_report.html
## [1] TRUE
de <- crp_pod1_a_adj
myname <- "crp_pod1_a_adj"

m <- mitch_import(x=de, DEtype="deseq2", geneTable=gt )
## The input is a single dataframe; one contrast only. Converting
##         it to a list for you.
## Note: Mean no. genes in input = 21313
## Note: no. genes in output = 21253
## Note: estimated proportion of input genes in output = 0.997
mres <- mitch_calc(x=m,genesets=reactome,minsetsize=5,cores=16,priority="effect")
## Note: Enrichments with large effect sizes may not be
##             statistically significant.
mtop <- head(subset (mres$enrichment_result,p.adjustANOVA<0.05),30)
mtop |> kbl(caption=paste(myname,"REACTOME")) |> kable_paper("hover", full_width = F)
crp_pod1_a_adj REACTOME
set setSize pANOVA s.dist p.adjustANOVA
854 MET activates PI3K/AKT signaling 5 0.0013901 0.8254330 0.0087839
178 CD163 mediating an anti-inflammatory response 8 0.0000618 0.8177689 0.0006978
962 NFE2L2 regulates pentose phosphate pathway genes 8 0.0001501 0.7738644 0.0013734
278 Cohesin Loading onto Chromatin 10 0.0000309 0.7608153 0.0004196
749 Insulin-like Growth Factor-2 mRNA Binding Proteins (IGF2BPs/IMPs/VICKZs) bind RNA 6 0.0022884 0.7189564 0.0132014
484 Establishment of Sister Chromatid Cohesion 11 0.0000933 0.6802732 0.0009435
1501 Scavenging by Class A Receptors 10 0.0003152 0.6578167 0.0025643
856 MET activates RAP1 and RAC1 10 0.0003164 0.6576378 0.0025643
1296 RUNX1 regulates transcription of genes involved in BCR signaling 6 0.0069079 0.6367644 0.0320531
25 ATF6 (ATF6-alpha) activates chaperone genes 10 0.0007205 0.6175022 0.0049787
614 Gain-of-function MRAS complexes activate RAF signaling 8 0.0028705 0.6086373 0.0157549
1467 SHOC2 M1731 mutant abolishes MRAS complex function 8 0.0028705 0.6086373 0.0157549
1578 Signaling by MRAS-complex mutants 8 0.0028705 0.6086373 0.0157549
21 APEX1-Independent Resolution of AP Sites via the Single Nucleotide Replacement Pathway 7 0.0053822 -0.6074286 0.0259781
480 Erythropoietin activates Phosphoinositide-3-kinase (PI3K) 11 0.0006332 0.5949277 0.0044555
1483 STAT5 activation downstream of FLT3 ITD mutants 9 0.0020109 0.5944999 0.0120339
307 Cross-presentation of particulate exogenous antigens (phagosomes) 8 0.0037801 0.5912215 0.0195730
479 Erythrocytes take up oxygen and release carbon dioxide 7 0.0068365 0.5902960 0.0318508
1390 Regulation of gene expression by Hypoxia-inducible Factor 8 0.0045939 0.5786185 0.0226863
1563 Signaling by FLT3 ITD and TKD mutants 15 0.0001385 0.5682142 0.0012918
1156 Platelet sensitization by LDL 16 0.0000890 0.5657638 0.0009194
442 EGFR Transactivation by Gastrin 7 0.0097390 0.5641667 0.0419475
1299 RUNX1 regulates transcription of genes involved in differentiation of keratinocytes 7 0.0104171 0.5590834 0.0442727
939 Mitotic Telophase/Cytokinesis 13 0.0004956 0.5578661 0.0036066
1347 Regulation of IFNG signaling 14 0.0003032 0.5575592 0.0024998
1083 PI-3K cascade:FGFR3 10 0.0030963 0.5401591 0.0166613
598 GAB1 signalosome 14 0.0005797 0.5310783 0.0041867
871 Maturation of hRSV A proteins 13 0.0010330 0.5255686 0.0068189
419 Displacement of DNA glycosylase by APEX1 9 0.0064262 -0.5245612 0.0304060
1066 Organic cation transport 8 0.0103850 0.5232055 0.0442343
vec <- mtop$s.dist
names(vec) <- mtop$set
vec <- sort(vec)
par( mar = c(5.1, 25.1, 4.1, 2.1) )
barplot(vec,horiz=TRUE,las=1,cex.names=0.7,xlab="ES",main=myname)

par( mar = c(5.1, 4.1, 4.1, 2.1) )
mitch_report(res=mres,outfile=paste(myname,"_mitchreport.html",sep=""),overwrite=TRUE)
## Note: overwriting existing report
## Dataset saved as " /tmp/RtmpDAn7eA/crp_pod1_a_adj_mitchreport.rds ".
## 
## 
## processing file: mitch.Rmd
## 1/34                             
## 2/34 [checklibraries]            
## 3/34                             
## 4/34 [peek]                      
## 5/34                             
## 6/34 [metrics]                   
## 7/34                             
## 8/34 [scatterplot]
## 9/34                             
## 10/34 [contourplot]               
## 11/34                             
## 12/34 [input_geneset_metrics1]    
## 13/34                             
## 14/34 [input_geneset_metrics2]
## 15/34                             
## 16/34 [input_geneset_metrics3]
## 17/34                             
## 18/34 [echart1d]                  
## 19/34 [echart2d]                  
## 20/34                             
## 21/34 [heatmap]                   
## 22/34                             
## 23/34 [effectsize]                
## 24/34                             
## 25/34 [results_table]             
## 26/34                             
## 27/34 [results_table_complete]    
## 28/34                             
## 29/34 [detailed_geneset_reports1d]
## 30/34                             
## 31/34 [detailed_geneset_reports2d]
## 32/34                             
## 33/34 [session_info]              
## 34/34
## output file: /home/mark.ziemann@domain.internal.burnet.edu.au/projects/paddi_data/dge/mitch.knit.md
## /usr/bin/pandoc +RTS -K512m -RTS /home/mark.ziemann@domain.internal.burnet.edu.au/projects/paddi_data/dge/mitch.knit.md --to html4 --from markdown+autolink_bare_uris+tex_math_single_backslash --output /tmp/RtmpDAn7eA/mitch_report.html --lua-filter /usr/local/lib/R/site-library/rmarkdown/rmarkdown/lua/pagebreak.lua --lua-filter /usr/local/lib/R/site-library/rmarkdown/rmarkdown/lua/latex-div.lua --self-contained --variable bs3=TRUE --section-divs --template /usr/local/lib/R/site-library/rmarkdown/rmd/h/default.html --no-highlight --variable highlightjs=1 --variable theme=bootstrap --mathjax --variable 'mathjax-url=https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML' --include-in-header /tmp/RtmpDAn7eA/rmarkdown-str383e391a251f5.html
## 
## Output created: /tmp/RtmpDAn7eA/mitch_report.html
## [1] TRUE
de <- crp_pod1_b_adj
myname <- "crp_pod1_b_adj"

m <- mitch_import(x=de, DEtype="deseq2", geneTable=gt )
## The input is a single dataframe; one contrast only. Converting
##         it to a list for you.
## Note: Mean no. genes in input = 21313
## Note: no. genes in output = 21253
## Note: estimated proportion of input genes in output = 0.997
mres <- mitch_calc(x=m,genesets=reactome,minsetsize=5,cores=16,priority="effect")
## Note: Enrichments with large effect sizes may not be
##             statistically significant.
mtop <- head(subset (mres$enrichment_result,p.adjustANOVA<0.05),30)
mtop |> kbl(caption=paste(myname,"REACTOME")) |> kable_paper("hover", full_width = F)
crp_pod1_b_adj REACTOME
set setSize pANOVA s.dist p.adjustANOVA
479 Erythrocytes take up oxygen and release carbon dioxide 7 0.0002446 0.8004330 0.0038521
165 Biosynthesis of Lipoxins (LX) 6 0.0018914 0.7323387 0.0194295
1192 Propionyl-CoA catabolism 5 0.0052667 -0.7205008 0.0432366
375 Defects of platelet adhesion to exposed collagen 6 0.0062418 0.6446714 0.0491411
356 Defective GALNT3 causes HFTC 8 0.0022063 0.6249000 0.0217352
178 CD163 mediating an anti-inflammatory response 8 0.0031146 0.6035185 0.0279584
355 Defective GALNT12 causes CRCS1 8 0.0036107 0.5941516 0.0316723
1739 Termination of O-glycan biosynthesis 15 0.0001145 0.5751828 0.0019133
910 Microtubule-dependent trafficking of connexons from Golgi to the plasma membrane 12 0.0008452 0.5563768 0.0108493
1814 Transport of connexons to the plasma membrane 12 0.0008452 0.5563768 0.0108493
1181 Processing and activation of SUMO 10 0.0039181 -0.5267712 0.0340023
180 CD22 mediated BCR regulation 58 0.0000000 0.5163059 0.0000000
408 Diseases of branched-chain amino acid catabolism 13 0.0013229 -0.5142909 0.0148614
1413 Repression of WNT target genes 14 0.0008922 0.5128033 0.0112756
1670 Synthesis of PIPs at the late endosome membrane 11 0.0038886 -0.5026834 0.0339543
1661 Synthesis of Leukotrienes (LT) and Eoxins (EX) 15 0.0009141 0.4944157 0.0113703
1503 Scavenging of heme from plasma 70 0.0000000 0.4724166 0.0000000
618 Gap junction assembly 16 0.0013965 0.4613587 0.0153513
283 Common Pathway of Fibrin Clot Formation 13 0.0043321 0.4569535 0.0365284
1149 Plasma lipoprotein remodeling 18 0.0008472 0.4542553 0.0108493
271 Classical antibody-mediated complement activation 69 0.0000000 0.4468467 0.0000000
55 Activation of Matrix Metalloproteinases 20 0.0006120 0.4424999 0.0086442
315 Cytochrome c-mediated apoptotic response 13 0.0059348 -0.4406925 0.0469508
1799 Translesion synthesis by POLI 17 0.0022616 -0.4277309 0.0220531
567 Formation of the ternary complex, and subsequently, the 43S complex 51 0.0000002 -0.4208778 0.0000059
1800 Translesion synthesis by POLK 17 0.0026839 -0.4204846 0.0252731
141 BBSome-mediated cargo-targeting to cilium 23 0.0005185 -0.4180548 0.0075452
1793 Translation initiation complex formation 58 0.0000000 -0.4172568 0.0000013
72 Activation of the mRNA upon binding of the cap-binding complex and eIFs, and subsequent binding to 43S 59 0.0000000 -0.4163219 0.0000011
159 Binding and Uptake of Ligands by Scavenger Receptors 90 0.0000000 0.4153244 0.0000000
vec <- mtop$s.dist
names(vec) <- mtop$set
vec <- sort(vec)
par( mar = c(5.1, 25.1, 4.1, 2.1) )
barplot(vec,horiz=TRUE,las=1,cex.names=0.7,xlab="ES",main=myname)

par( mar = c(5.1, 4.1, 4.1, 2.1) )
mitch_report(res=mres,outfile=paste(myname,"_mitchreport.html",sep=""),overwrite=TRUE)
## Note: overwriting existing report
## Dataset saved as " /tmp/RtmpDAn7eA/crp_pod1_b_adj_mitchreport.rds ".
## 
## 
## processing file: mitch.Rmd
## 1/34                             
## 2/34 [checklibraries]            
## 3/34                             
## 4/34 [peek]                      
## 5/34                             
## 6/34 [metrics]                   
## 7/34                             
## 8/34 [scatterplot]
## 9/34                             
## 10/34 [contourplot]               
## 11/34                             
## 12/34 [input_geneset_metrics1]    
## 13/34                             
## 14/34 [input_geneset_metrics2]
## 15/34                             
## 16/34 [input_geneset_metrics3]
## 17/34                             
## 18/34 [echart1d]                  
## 19/34 [echart2d]                  
## 20/34                             
## 21/34 [heatmap]                   
## 22/34                             
## 23/34 [effectsize]                
## 24/34                             
## 25/34 [results_table]             
## 26/34                             
## 27/34 [results_table_complete]    
## 28/34                             
## 29/34 [detailed_geneset_reports1d]
## 30/34                             
## 31/34 [detailed_geneset_reports2d]
## 32/34                             
## 33/34 [session_info]              
## 34/34
## output file: /home/mark.ziemann@domain.internal.burnet.edu.au/projects/paddi_data/dge/mitch.knit.md
## /usr/bin/pandoc +RTS -K512m -RTS /home/mark.ziemann@domain.internal.burnet.edu.au/projects/paddi_data/dge/mitch.knit.md --to html4 --from markdown+autolink_bare_uris+tex_math_single_backslash --output /tmp/RtmpDAn7eA/mitch_report.html --lua-filter /usr/local/lib/R/site-library/rmarkdown/rmarkdown/lua/pagebreak.lua --lua-filter /usr/local/lib/R/site-library/rmarkdown/rmarkdown/lua/latex-div.lua --self-contained --variable bs3=TRUE --section-divs --template /usr/local/lib/R/site-library/rmarkdown/rmd/h/default.html --no-highlight --variable highlightjs=1 --variable theme=bootstrap --mathjax --variable 'mathjax-url=https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML' --include-in-header /tmp/RtmpDAn7eA/rmarkdown-str383e3928414f6.html
## 
## Output created: /tmp/RtmpDAn7eA/mitch_report.html
## [1] TRUE
de <- avb_crplo_t0_adj
myname <- "avb_crplo_t0_adj"

m <- mitch_import(x=de, DEtype="deseq2", geneTable=gt )
## The input is a single dataframe; one contrast only. Converting
##         it to a list for you.
## Note: Mean no. genes in input = 21935
## Note: no. genes in output = 21870
## Note: estimated proportion of input genes in output = 0.997
mres <- mitch_calc(x=m,genesets=reactome,minsetsize=5,cores=16,priority="effect")
## Note: Enrichments with large effect sizes may not be
##             statistically significant.
mtop <- head(subset (mres$enrichment_result,p.adjustANOVA<0.05),30)
mtop |> kbl(caption=paste(myname,"REACTOME")) |> kable_paper("hover", full_width = F)
avb_crplo_t0_adj REACTOME
set setSize pANOVA s.dist p.adjustANOVA
164 Biosynthesis of EPA-derived SPMs 6 0.0002573 -0.8615075 0.0043872
165 Biosynthesis of Lipoxins (LX) 6 0.0003343 -0.8455452 0.0052468
163 Biosynthesis of E-series 18(S)-resolvins 5 0.0011737 -0.8379511 0.0134622
1206 Protein repair 6 0.0009254 -0.7807659 0.0114927
309 Cross-presentation of particulate exogenous antigens (phagosomes) 8 0.0002057 -0.7577646 0.0036358
1658 Synthesis of 15-eicosatetraenoic acid derivatives 6 0.0027112 -0.7068697 0.0240756
1659 Synthesis of 5-eicosatetraenoic acids 7 0.0015459 -0.6909325 0.0164583
1657 Synthesis of 12-eicosatetraenoic acid derivatives 6 0.0050614 -0.6607666 0.0399723
1105 POLB-Dependent Long Patch Base Excision Repair 8 0.0012662 0.6580825 0.0141184
1532 Signal attenuation 9 0.0006861 -0.6534671 0.0090557
777 Interleukin-21 signaling 9 0.0011735 0.6246385 0.0134622
1062 OAS antiviral response 8 0.0025697 0.6155201 0.0231394
805 Keratan sulfate degradation 9 0.0031917 -0.5675607 0.0274568
108 Antimicrobial peptides 34 0.0000000 -0.5571722 0.0000014
1417 Replacement of protamines by nucleosomes in the male pronucleus 13 0.0005307 -0.5549252 0.0074649
280 Cohesin Loading onto Chromatin 10 0.0026575 0.5487008 0.0238184
1266 RNA Polymerase I Promoter Opening 17 0.0000924 -0.5476271 0.0022833
888 Metabolism of Angiotensinogen to Angiotensins 12 0.0010690 -0.5453991 0.0127157
942 Mitotic Telophase/Cytokinesis 13 0.0009162 0.5309582 0.0114749
1430 Response of EIF2AK1 (HRI) to heme deficiency 14 0.0007096 -0.5225763 0.0093019
987 NR1H3 & NR1H2 regulate gene expression linked to cholesterol transport and efflux 32 0.0000005 0.5125212 0.0000297
676 HDR through MMEJ (alt-NHEJ) 12 0.0024536 0.5049486 0.0223024
1703 TGFBR3 expression 20 0.0001030 0.5015286 0.0024802
285 Common Pathway of Fibrin Clot Formation 13 0.0017717 -0.5006916 0.0182203
1362 Regulation of NPAS4 gene expression 11 0.0051223 0.4873923 0.0402882
42 Activated PKN1 stimulates transcription of AR (androgen receptor) regulated genes KLK2 and KLK3 20 0.0005120 -0.4487117 0.0073279
1674 Synthesis of PIPs at the early endosome membrane 16 0.0021308 0.4434543 0.0204278
1292 RORA activates gene expression 18 0.0011448 0.4427360 0.0132888
1818 Transport of Ribonucleoproteins into the Host Nucleus 32 0.0000147 0.4424770 0.0005454
1666 Synthesis of Leukotrienes (LT) and Eoxins (EX) 16 0.0022628 -0.4408575 0.0210576
vec <- mtop$s.dist
names(vec) <- mtop$set
vec <- sort(vec)
par( mar = c(5.1, 25.1, 4.1, 2.1) )
barplot(vec,horiz=TRUE,las=1,cex.names=0.7,xlab="ES",main=myname)

par( mar = c(5.1, 4.1, 4.1, 2.1) )
mitch_report(res=mres,outfile=paste(myname,"_mitchreport.html",sep=""),overwrite=TRUE)
## Note: overwriting existing report
## Dataset saved as " /tmp/RtmpDAn7eA/avb_crplo_t0_adj_mitchreport.rds ".
## 
## 
## processing file: mitch.Rmd
## 1/34                             
## 2/34 [checklibraries]            
## 3/34                             
## 4/34 [peek]                      
## 5/34                             
## 6/34 [metrics]                   
## 7/34                             
## 8/34 [scatterplot]
## 9/34                             
## 10/34 [contourplot]               
## 11/34                             
## 12/34 [input_geneset_metrics1]    
## 13/34                             
## 14/34 [input_geneset_metrics2]
## 15/34                             
## 16/34 [input_geneset_metrics3]
## 17/34                             
## 18/34 [echart1d]                  
## 19/34 [echart2d]                  
## 20/34                             
## 21/34 [heatmap]                   
## 22/34                             
## 23/34 [effectsize]                
## 24/34                             
## 25/34 [results_table]             
## 26/34                             
## 27/34 [results_table_complete]    
## 28/34                             
## 29/34 [detailed_geneset_reports1d]
## 30/34                             
## 31/34 [detailed_geneset_reports2d]
## 32/34                             
## 33/34 [session_info]              
## 34/34
## output file: /home/mark.ziemann@domain.internal.burnet.edu.au/projects/paddi_data/dge/mitch.knit.md
## /usr/bin/pandoc +RTS -K512m -RTS /home/mark.ziemann@domain.internal.burnet.edu.au/projects/paddi_data/dge/mitch.knit.md --to html4 --from markdown+autolink_bare_uris+tex_math_single_backslash --output /tmp/RtmpDAn7eA/mitch_report.html --lua-filter /usr/local/lib/R/site-library/rmarkdown/rmarkdown/lua/pagebreak.lua --lua-filter /usr/local/lib/R/site-library/rmarkdown/rmarkdown/lua/latex-div.lua --self-contained --variable bs3=TRUE --section-divs --template /usr/local/lib/R/site-library/rmarkdown/rmd/h/default.html --no-highlight --variable highlightjs=1 --variable theme=bootstrap --mathjax --variable 'mathjax-url=https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML' --include-in-header /tmp/RtmpDAn7eA/rmarkdown-str383e3993ef8cd.html
## 
## Output created: /tmp/RtmpDAn7eA/mitch_report.html
## [1] TRUE
de <- avb_crphi_t0_adj
myname <- "avb_crphi_t0_adj"

m <- mitch_import(x=de, DEtype="deseq2", geneTable=gt )
## The input is a single dataframe; one contrast only. Converting
##         it to a list for you.
## Note: Mean no. genes in input = 21935
## Note: no. genes in output = 21870
## Note: estimated proportion of input genes in output = 0.997
mres <- mitch_calc(x=m,genesets=reactome,minsetsize=5,cores=16,priority="effect")
## Note: Enrichments with large effect sizes may not be
##             statistically significant.
mtop <- head(subset (mres$enrichment_result,p.adjustANOVA<0.05),30)
mtop |> kbl(caption=paste(myname,"REACTOME")) |> kable_paper("hover", full_width = F)
avb_crphi_t0_adj REACTOME
set setSize pANOVA s.dist p.adjustANOVA
1148 Phosphorylation of Emi1 6 0.0010265 0.7739054 0.0048071
273 Classical antibody-mediated complement activation 70 0.0000000 0.7615491 0.0000000
983 NR1H2 & NR1H3 regulate gene expression linked to triglyceride lipolysis in adipose 5 0.0038165 0.7470112 0.0146795
1508 Scavenging of heme from plasma 71 0.0000000 0.7387811 0.0000000
307 Creation of C4 and C2 activators 72 0.0000000 0.7354446 0.0000000
982 NR1H2 & NR1H3 regulate gene expression linked to lipogenesis 8 0.0004602 0.7150993 0.0024363
879 Maturation of spike protein_9683686 5 0.0057687 0.7128562 0.0204343
742 Initial triggering of complement 80 0.0000000 0.6920181 0.0000000
507 FCGR activation 77 0.0000000 0.6874476 0.0000000
1662 Synthesis of GDP-mannose 6 0.0038085 0.6820954 0.0146781
180 CD22 mediated BCR regulation 59 0.0000000 0.6782824 0.0000000
659 Glycosphingolipid transport 7 0.0020856 0.6716958 0.0089113
557 Formation of annular gap junctions 10 0.0002511 0.6685178 0.0014401
1010 Negative regulation of TCF-dependent signaling by DVL-interacting proteins 5 0.0099340 0.6657306 0.0319580
1445 Role of LAT2/NTAL/LAB on calcium mobilization 78 0.0000000 0.6455545 0.0000000
1647 Sulfide oxidation to sulfate 5 0.0125554 0.6445644 0.0385874
1837 Type I hemidesmosome assembly 8 0.0016043 0.6441199 0.0071395
406 Diseases of Base Excision Repair 5 0.0128519 0.6424240 0.0392482
984 NR1H2 & NR1H3 regulate gene expression to control bile acid homeostasis 7 0.0034402 0.6384498 0.0135015
985 NR1H2 & NR1H3 regulate gene expression to limit cholesterol uptake 5 0.0137408 0.6362589 0.0411158
1845 Unwinding of DNA 12 0.0001961 0.6207720 0.0011699
660 Glyoxylate metabolism and glycine degradation 13 0.0001074 0.6203153 0.0007139
57 Activation of NIMA Kinases NEK9, NEK6, NEK7 7 0.0045047 0.6199188 0.0168555
599 G2/M DNA replication checkpoint 5 0.0169823 0.6164098 0.0489893
1446 Role of phospholipids in phagocytosis 89 0.0000000 0.6104852 0.0000000
159 Binding and Uptake of Ligands by Scavenger Receptors 93 0.0000000 0.5990156 0.0000000
1361 Regulation of NFE2L2 gene expression 8 0.0036800 0.5929352 0.0142973
994 Nef Mediated CD4 Down-regulation 9 0.0021616 0.5903512 0.0091953
497 Expression and translocation of olfactory receptors 52 0.0000000 -0.5868461 0.0000000
508 FCGR3A-mediated IL10 synthesis 100 0.0000000 0.5836040 0.0000000
vec <- mtop$s.dist
names(vec) <- mtop$set
vec <- sort(vec)
par( mar = c(5.1, 25.1, 4.1, 2.1) )
barplot(vec,horiz=TRUE,las=1,cex.names=0.7,xlab="ES",main=myname)

par( mar = c(5.1, 4.1, 4.1, 2.1) )
mitch_report(res=mres,outfile=paste(myname,"_mitchreport.html",sep=""),overwrite=TRUE)
## Note: overwriting existing report
## Dataset saved as " /tmp/RtmpDAn7eA/avb_crphi_t0_adj_mitchreport.rds ".
## 
## 
## processing file: mitch.Rmd
## 1/34                             
## 2/34 [checklibraries]            
## 3/34                             
## 4/34 [peek]                      
## 5/34                             
## 6/34 [metrics]                   
## 7/34                             
## 8/34 [scatterplot]
## 9/34                             
## 10/34 [contourplot]               
## 11/34                             
## 12/34 [input_geneset_metrics1]    
## 13/34                             
## 14/34 [input_geneset_metrics2]
## 15/34                             
## 16/34 [input_geneset_metrics3]
## 17/34                             
## 18/34 [echart1d]                  
## 19/34 [echart2d]                  
## 20/34                             
## 21/34 [heatmap]                   
## 22/34                             
## 23/34 [effectsize]                
## 24/34                             
## 25/34 [results_table]             
## 26/34                             
## 27/34 [results_table_complete]    
## 28/34                             
## 29/34 [detailed_geneset_reports1d]
## 30/34                             
## 31/34 [detailed_geneset_reports2d]
## 32/34                             
## 33/34 [session_info]              
## 34/34
## output file: /home/mark.ziemann@domain.internal.burnet.edu.au/projects/paddi_data/dge/mitch.knit.md
## /usr/bin/pandoc +RTS -K512m -RTS /home/mark.ziemann@domain.internal.burnet.edu.au/projects/paddi_data/dge/mitch.knit.md --to html4 --from markdown+autolink_bare_uris+tex_math_single_backslash --output /tmp/RtmpDAn7eA/mitch_report.html --lua-filter /usr/local/lib/R/site-library/rmarkdown/rmarkdown/lua/pagebreak.lua --lua-filter /usr/local/lib/R/site-library/rmarkdown/rmarkdown/lua/latex-div.lua --self-contained --variable bs3=TRUE --section-divs --template /usr/local/lib/R/site-library/rmarkdown/rmd/h/default.html --no-highlight --variable highlightjs=1 --variable theme=bootstrap --mathjax --variable 'mathjax-url=https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML' --include-in-header /tmp/RtmpDAn7eA/rmarkdown-str383e3943954682.html
## 
## Output created: /tmp/RtmpDAn7eA/mitch_report.html
## [1] TRUE
de <- avb_crplo_eos_adj
myname <- "avb_crplo_eos_adj"

m <- mitch_import(x=de, DEtype="deseq2", geneTable=gt )
## The input is a single dataframe; one contrast only. Converting
##         it to a list for you.
## Note: Mean no. genes in input = 22067
## Note: no. genes in output = 21999
## Note: estimated proportion of input genes in output = 0.997
mres <- mitch_calc(x=m,genesets=reactome,minsetsize=5,cores=16,priority="effect")
## Note: Enrichments with large effect sizes may not be
##             statistically significant.
mtop <- head(subset (mres$enrichment_result,p.adjustANOVA<0.05),30)
mtop |> kbl(caption=paste(myname,"REACTOME")) |> kable_paper("hover", full_width = F)
avb_crplo_eos_adj REACTOME
set setSize pANOVA s.dist p.adjustANOVA
1301 RUNX1 regulates expression of components of tight junctions 5 0.0012342 -0.8342457 0.0111304
22 APOBEC3G mediated resistance to HIV-1 infection 5 0.0028352 0.7707920 0.0223579
180 CD163 mediating an anti-inflammatory response 9 0.0000762 -0.7613764 0.0010301
573 Formation of the ureteric bud 5 0.0032974 -0.7587888 0.0252798
1303 RUNX1 regulates transcription of genes involved in BCR signaling 6 0.0014637 -0.7500114 0.0127960
1141 Phenylalanine metabolism 5 0.0043197 0.7369101 0.0301289
166 Biosynthesis of Lipoxins (LX) 6 0.0025317 -0.7117719 0.0202121
1312 RUNX3 regulates BCL2L11 (BIM) transcription 5 0.0079601 -0.6852596 0.0485137
1107 POLB-Dependent Long Patch Base Excision Repair 8 0.0009261 0.6761516 0.0086017
1127 Peptide chain elongation 88 0.0000000 0.6603553 0.0000000
495 Eukaryotic Translation Elongation 93 0.0000000 0.6530513 0.0000000
559 Formation of a pool of free 40S subunits 100 0.0000000 0.6442221 0.0000000
1454 SARS-CoV-1 modulates host translation machinery 36 0.0000000 0.6416928 0.0000000
497 Eukaryotic Translation Termination 92 0.0000000 0.6410548 0.0000000
1867 Viral mRNA Translation 88 0.0000000 0.6409421 0.0000000
1514 Selenocysteine synthesis 92 0.0000000 0.6339397 0.0000000
1039 Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) 94 0.0000000 0.5898119 0.0000000
968 NFE2L2 regulates pentose phosphate pathway genes 8 0.0040551 -0.5867059 0.0288031
619 GTP hydrolysis and joining of the 60S ribosomal subunit 111 0.0000000 0.5856885 0.0000000
1814 Translocation of ZAP-70 to Immunological synapse 24 0.0000007 0.5852408 0.0000162
815 L13a-mediated translational silencing of Ceruloplasmin expression 110 0.0000000 0.5844671 0.0000000
220 Cap-dependent Translation Initiation 118 0.0000000 0.5835718 0.0000000
496 Eukaryotic Translation Initiation 118 0.0000000 0.5835718 0.0000000
182 CD22 mediated BCR regulation 58 0.0000000 -0.5790105 0.0000000
1433 Response of EIF2AK4 (GCN2) to amino acid deficiency 100 0.0000000 0.5730024 0.0000000
572 Formation of the ternary complex, and subsequently, the 43S complex 51 0.0000000 0.5727102 0.0000000
1510 Scavenging of heme from plasma 70 0.0000000 -0.5710090 0.0000000
1460 SARS-CoV-2 modulates host translation machinery 49 0.0000000 0.5656083 0.0000000
1298 RUNX1 and FOXP3 control the development of regulatory T lymphocytes (Tregs) 9 0.0034647 -0.5626598 0.0260459
549 Folding of actin by CCT/TriC 10 0.0021468 0.5604439 0.0174270
vec <- mtop$s.dist
names(vec) <- mtop$set
vec <- sort(vec)
par( mar = c(5.1, 25.1, 4.1, 2.1) )
barplot(vec,horiz=TRUE,las=1,cex.names=0.7,xlab="ES",main=myname)

par( mar = c(5.1, 4.1, 4.1, 2.1) )
mitch_report(res=mres,outfile=paste(myname,"_mitchreport.html",sep=""),overwrite=TRUE)
## Note: overwriting existing report
## Dataset saved as " /tmp/RtmpDAn7eA/avb_crplo_eos_adj_mitchreport.rds ".
## 
## 
## processing file: mitch.Rmd
## 1/34                             
## 2/34 [checklibraries]            
## 3/34                             
## 4/34 [peek]                      
## 5/34                             
## 6/34 [metrics]                   
## 7/34                             
## 8/34 [scatterplot]
## 9/34                             
## 10/34 [contourplot]               
## 11/34                             
## 12/34 [input_geneset_metrics1]    
## 13/34                             
## 14/34 [input_geneset_metrics2]
## 15/34                             
## 16/34 [input_geneset_metrics3]
## 17/34                             
## 18/34 [echart1d]                  
## 19/34 [echart2d]                  
## 20/34                             
## 21/34 [heatmap]                   
## 22/34                             
## 23/34 [effectsize]                
## 24/34                             
## 25/34 [results_table]             
## 26/34                             
## 27/34 [results_table_complete]    
## 28/34                             
## 29/34 [detailed_geneset_reports1d]
## 30/34                             
## 31/34 [detailed_geneset_reports2d]
## 32/34                             
## 33/34 [session_info]              
## 34/34
## output file: /home/mark.ziemann@domain.internal.burnet.edu.au/projects/paddi_data/dge/mitch.knit.md
## /usr/bin/pandoc +RTS -K512m -RTS /home/mark.ziemann@domain.internal.burnet.edu.au/projects/paddi_data/dge/mitch.knit.md --to html4 --from markdown+autolink_bare_uris+tex_math_single_backslash --output /tmp/RtmpDAn7eA/mitch_report.html --lua-filter /usr/local/lib/R/site-library/rmarkdown/rmarkdown/lua/pagebreak.lua --lua-filter /usr/local/lib/R/site-library/rmarkdown/rmarkdown/lua/latex-div.lua --self-contained --variable bs3=TRUE --section-divs --template /usr/local/lib/R/site-library/rmarkdown/rmd/h/default.html --no-highlight --variable highlightjs=1 --variable theme=bootstrap --mathjax --variable 'mathjax-url=https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML' --include-in-header /tmp/RtmpDAn7eA/rmarkdown-str383e3975b0db1c.html
## 
## Output created: /tmp/RtmpDAn7eA/mitch_report.html
## [1] TRUE
de <- avb_crphi_eos_adj
myname <- "avb_crphi_eos_adj"

m <- mitch_import(x=de, DEtype="deseq2", geneTable=gt )
## The input is a single dataframe; one contrast only. Converting
##         it to a list for you.
## Note: Mean no. genes in input = 22067
## Note: no. genes in output = 21999
## Note: estimated proportion of input genes in output = 0.997
mres <- mitch_calc(x=m,genesets=reactome,minsetsize=5,cores=16,priority="effect")
## Note: Enrichments with large effect sizes may not be
##             statistically significant.
mtop <- head(subset (mres$enrichment_result,p.adjustANOVA<0.05),30)
mtop |> kbl(caption=paste(myname,"REACTOME")) |> kable_paper("hover", full_width = F)
avb_crphi_eos_adj REACTOME
set setSize pANOVA s.dist p.adjustANOVA
1303 RUNX1 regulates transcription of genes involved in BCR signaling 6 0.0009984 -0.7757468 0.0257181
180 CD163 mediating an anti-inflammatory response 9 0.0000712 -0.7644889 0.0051406
580 Fructose metabolism 7 0.0018067 0.6809749 0.0371340
984 NR1H2 & NR1H3 regulate gene expression linked to lipogenesis 8 0.0013045 0.6563367 0.0293055
862 MET activates RAP1 and RAC1 10 0.0024962 -0.5521670 0.0459306
25 ATF6 (ATF6-alpha) activates chaperone genes 10 0.0026500 -0.5488562 0.0478489
309 Creation of C4 and C2 activators 71 0.0000000 0.4796170 0.0000000
745 Initial triggering of complement 79 0.0000000 0.4745091 0.0000000
1814 Translocation of ZAP-70 to Immunological synapse 24 0.0000615 0.4724308 0.0047518
275 Classical antibody-mediated complement activation 69 0.0000000 0.4698520 0.0000000
1510 Scavenging of heme from plasma 70 0.0000000 0.4471092 0.0000000
344 DNA strand elongation 32 0.0000948 0.3986434 0.0057422
182 CD22 mediated BCR regulation 58 0.0000002 0.3946163 0.0000443
1149 Phosphorylation of CD3 and TCR zeta chains 27 0.0006383 0.3796279 0.0199390
1082 PD-1 signaling 28 0.0006018 0.3745392 0.0197075
924 Mitochondrial RNA degradation 25 0.0012222 -0.3735797 0.0287010
510 FCGR activation 76 0.0000000 0.3707618 0.0000073
693 Hedgehog ligand biogenesis 47 0.0000111 -0.3704427 0.0011275
1065 Olfactory Signaling Pathway 61 0.0000006 -0.3700399 0.0000923
500 Expression and translocation of olfactory receptors 56 0.0000018 -0.3686971 0.0002204
989 NR1H3 & NR1H2 regulate gene expression linked to cholesterol transport and efflux 33 0.0002672 0.3665913 0.0117343
988 NR1H2 and NR1H3-mediated signaling 39 0.0001177 0.3562912 0.0063160
1448 Role of phospholipids in phagocytosis 88 0.0000000 0.3555053 0.0000031
700 Hh mutants are degraded by ERAD 42 0.0000817 -0.3512276 0.0056404
699 Hh mutants abrogate ligand secretion 43 0.0000718 -0.3498477 0.0051406
27 AUF1 (hnRNP D0) binds and destabilizes mRNA 42 0.0000904 -0.3490741 0.0057422
1098 PINK1-PRKN Mediated Mitophagy 31 0.0008809 -0.3451149 0.0238647
1387 Regulation of activated PAK-2p34 by proteasome mediated degradation 37 0.0004086 -0.3357298 0.0153353
1447 Role of LAT2/NTAL/LAB on calcium mobilization 77 0.0000004 0.3356422 0.0000617
383 Degradation of GLI1 by the proteasome 46 0.0000951 -0.3325325 0.0057422
vec <- mtop$s.dist
names(vec) <- mtop$set
vec <- sort(vec)
par( mar = c(5.1, 25.1, 4.1, 2.1) )
barplot(vec,horiz=TRUE,las=1,cex.names=0.7,xlab="ES",main=myname)

par( mar = c(5.1, 4.1, 4.1, 2.1) )
mitch_report(res=mres,outfile=paste(myname,"_mitchreport.html",sep=""),overwrite=TRUE)
## Note: overwriting existing report
## Dataset saved as " /tmp/RtmpDAn7eA/avb_crphi_eos_adj_mitchreport.rds ".
## 
## 
## processing file: mitch.Rmd
## 1/34                             
## 2/34 [checklibraries]            
## 3/34                             
## 4/34 [peek]                      
## 5/34                             
## 6/34 [metrics]                   
## 7/34                             
## 8/34 [scatterplot]
## 9/34                             
## 10/34 [contourplot]               
## 11/34                             
## 12/34 [input_geneset_metrics1]    
## 13/34                             
## 14/34 [input_geneset_metrics2]
## 15/34                             
## 16/34 [input_geneset_metrics3]
## 17/34                             
## 18/34 [echart1d]                  
## 19/34 [echart2d]                  
## 20/34                             
## 21/34 [heatmap]                   
## 22/34                             
## 23/34 [effectsize]                
## 24/34                             
## 25/34 [results_table]             
## 26/34                             
## 27/34 [results_table_complete]    
## 28/34                             
## 29/34 [detailed_geneset_reports1d]
## 30/34                             
## 31/34 [detailed_geneset_reports2d]
## 32/34                             
## 33/34 [session_info]              
## 34/34
## output file: /home/mark.ziemann@domain.internal.burnet.edu.au/projects/paddi_data/dge/mitch.knit.md
## /usr/bin/pandoc +RTS -K512m -RTS /home/mark.ziemann@domain.internal.burnet.edu.au/projects/paddi_data/dge/mitch.knit.md --to html4 --from markdown+autolink_bare_uris+tex_math_single_backslash --output /tmp/RtmpDAn7eA/mitch_report.html --lua-filter /usr/local/lib/R/site-library/rmarkdown/rmarkdown/lua/pagebreak.lua --lua-filter /usr/local/lib/R/site-library/rmarkdown/rmarkdown/lua/latex-div.lua --self-contained --variable bs3=TRUE --section-divs --template /usr/local/lib/R/site-library/rmarkdown/rmd/h/default.html --no-highlight --variable highlightjs=1 --variable theme=bootstrap --mathjax --variable 'mathjax-url=https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML' --include-in-header /tmp/RtmpDAn7eA/rmarkdown-str383e3977a4c4f9.html
## 
## Output created: /tmp/RtmpDAn7eA/mitch_report.html
## [1] TRUE
de <- avb_crplo_pod1_adj
myname <- "avb_crplo_pod1_adj"

m <- mitch_import(x=de, DEtype="deseq2", geneTable=gt )
## The input is a single dataframe; one contrast only. Converting
##         it to a list for you.
## Note: Mean no. genes in input = 21313
## Note: no. genes in output = 21253
## Note: estimated proportion of input genes in output = 0.997
mres <- mitch_calc(x=m,genesets=reactome,minsetsize=5,cores=16,priority="effect")
## Note: Enrichments with large effect sizes may not be
##             statistically significant.
mtop <- head(subset (mres$enrichment_result,p.adjustANOVA<0.05),30)
mtop |> kbl(caption=paste(myname,"REACTOME")) |> kable_paper("hover", full_width = F)
avb_crplo_pod1_adj REACTOME
set setSize pANOVA s.dist p.adjustANOVA
484 Establishment of Sister Chromatid Cohesion 11 0.0000090 0.7730825 0.0012307
278 Cohesin Loading onto Chromatin 10 0.0002337 0.6718637 0.0144840
11 ALK mutants bind TKIs 11 0.0008331 0.5817976 0.0355649
1670 Synthesis of PIPs at the late endosome membrane 11 0.0012769 0.5608357 0.0471709
1347 Regulation of IFNG signaling 14 0.0003429 0.5526222 0.0199592
939 Mitotic Telophase/Cytokinesis 13 0.0010722 0.5238809 0.0438247
1669 Synthesis of PIPs at the early endosome membrane 16 0.0007142 0.4885930 0.0333321
759 Interferon alpha/beta signaling 63 0.0000000 0.4160962 0.0000071
722 Impaired BRCA2 binding to RAD51 35 0.0000868 0.3832945 0.0064121
1151 Platelet Aggregation (Plug Formation) 28 0.0011217 -0.3556958 0.0447640
368 Defective homologous recombination repair (HRR) due to BRCA2 loss of function 41 0.0003855 0.3203548 0.0211601
404 Diseases of DNA Double-Strand Break Repair 41 0.0003855 0.3203548 0.0211601
674 HDR through Single Strand Annealing (SSA) 37 0.0008124 0.3180822 0.0354692
1179 Presynaptic phase of homologous DNA pairing and strand exchange 40 0.0005050 0.3177768 0.0255297
840 M-decay: degradation of maternal mRNAs by maternally stored factors 41 0.0011762 0.2928186 0.0447640
697 Homologous DNA Pairing and Strand Exchange 43 0.0011497 0.2865125 0.0447640
717 ISG15 antiviral mechanism 72 0.0000652 0.2721333 0.0050077
97 Amplification of signal from unattached kinetochores via a MAD2 inhibitory signal 90 0.0000541 0.2461833 0.0047240
98 Amplification of signal from the kinetochores 90 0.0000541 0.2461833 0.0047240
1420 Resolution of Sister Chromatid Cohesion 115 0.0000117 0.2366289 0.0014921
938 Mitotic Spindle Checkpoint 107 0.0000395 0.2299801 0.0044589
1521 Separation of Sister Chromatids 167 0.0000086 0.1995432 0.0012307
231 Cell Cycle Checkpoints 245 0.0000001 0.1992893 0.0000365
109 Antiviral mechanism by IFN-stimulated genes 140 0.0000470 0.1992219 0.0047240
446 EML4 and NUDC in mitotic spindle formation 106 0.0005382 0.1945537 0.0265074
1421 Respiratory Syncytial Virus Infection Pathway 97 0.0009300 0.1945187 0.0388373
933 Mitotic G1 phase and G1/S transition 138 0.0001324 0.1884264 0.0094229
594 G2/M Checkpoints 126 0.0002898 0.1869480 0.0173977
935 Mitotic Metaphase and Anaphase 211 0.0000029 0.1868220 0.0006187
932 Mitotic Anaphase 210 0.0000033 0.1861449 0.0006377
vec <- mtop$s.dist
names(vec) <- mtop$set
vec <- sort(vec)
par( mar = c(5.1, 25.1, 4.1, 2.1) )
barplot(vec,horiz=TRUE,las=1,cex.names=0.7,xlab="ES",main=myname)

par( mar = c(5.1, 4.1, 4.1, 2.1) )
mitch_report(res=mres,outfile=paste(myname,"_mitchreport.html",sep=""),overwrite=TRUE)
## Note: overwriting existing report
## Dataset saved as " /tmp/RtmpDAn7eA/avb_crplo_pod1_adj_mitchreport.rds ".
## 
## 
## processing file: mitch.Rmd
## 1/34                             
## 2/34 [checklibraries]            
## 3/34                             
## 4/34 [peek]                      
## 5/34                             
## 6/34 [metrics]                   
## 7/34                             
## 8/34 [scatterplot]
## 9/34                             
## 10/34 [contourplot]               
## 11/34                             
## 12/34 [input_geneset_metrics1]    
## 13/34                             
## 14/34 [input_geneset_metrics2]
## 15/34                             
## 16/34 [input_geneset_metrics3]
## 17/34                             
## 18/34 [echart1d]                  
## 19/34 [echart2d]                  
## 20/34                             
## 21/34 [heatmap]                   
## 22/34                             
## 23/34 [effectsize]                
## 24/34                             
## 25/34 [results_table]             
## 26/34                             
## 27/34 [results_table_complete]    
## 28/34                             
## 29/34 [detailed_geneset_reports1d]
## 30/34                             
## 31/34 [detailed_geneset_reports2d]
## 32/34                             
## 33/34 [session_info]              
## 34/34
## output file: /home/mark.ziemann@domain.internal.burnet.edu.au/projects/paddi_data/dge/mitch.knit.md
## /usr/bin/pandoc +RTS -K512m -RTS /home/mark.ziemann@domain.internal.burnet.edu.au/projects/paddi_data/dge/mitch.knit.md --to html4 --from markdown+autolink_bare_uris+tex_math_single_backslash --output /tmp/RtmpDAn7eA/mitch_report.html --lua-filter /usr/local/lib/R/site-library/rmarkdown/rmarkdown/lua/pagebreak.lua --lua-filter /usr/local/lib/R/site-library/rmarkdown/rmarkdown/lua/latex-div.lua --self-contained --variable bs3=TRUE --section-divs --template /usr/local/lib/R/site-library/rmarkdown/rmd/h/default.html --no-highlight --variable highlightjs=1 --variable theme=bootstrap --mathjax --variable 'mathjax-url=https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML' --include-in-header /tmp/RtmpDAn7eA/rmarkdown-str383e393efe9abd.html
## 
## Output created: /tmp/RtmpDAn7eA/mitch_report.html
## [1] TRUE
de <- avb_crphi_pod1_adj
myname <- "avb_crphi_pod1_adj"

m <- mitch_import(x=de, DEtype="deseq2", geneTable=gt )
## The input is a single dataframe; one contrast only. Converting
##         it to a list for you.
## Note: Mean no. genes in input = 21313
## Note: no. genes in output = 21253
## Note: estimated proportion of input genes in output = 0.997
mres <- mitch_calc(x=m,genesets=reactome,minsetsize=5,cores=16,priority="effect")
## Note: Enrichments with large effect sizes may not be
##             statistically significant.
mtop <- head(subset (mres$enrichment_result,p.adjustANOVA<0.05),30)
mtop |> kbl(caption=paste(myname,"REACTOME")) |> kable_paper("hover", full_width = F)
avb_crphi_pod1_adj REACTOME
set setSize pANOVA s.dist p.adjustANOVA
180 CD22 mediated BCR regulation 58 0.0000000 0.8133555 0.0000000
1143 Phosphorylation of Emi1 6 0.0009131 0.7816476 0.0148651
1503 Scavenging of heme from plasma 70 0.0000000 0.7784045 0.0000000
505 FCGR activation 76 0.0000000 0.7723287 0.0000000
271 Classical antibody-mediated complement activation 69 0.0000000 0.7541541 0.0000000
596 G2/M DNA replication checkpoint 5 0.0036433 0.7507718 0.0426751
1831 Type I hemidesmosome assembly 8 0.0003990 0.7228289 0.0075881
305 Creation of C4 and C2 activators 71 0.0000000 0.7203392 0.0000000
1440 Role of LAT2/NTAL/LAB on calcium mobilization 77 0.0000000 0.6860033 0.0000000
1839 Unwinding of DNA 12 0.0000606 0.6684870 0.0015327
57 Activation of NIMA Kinases NEK9, NEK6, NEK7 7 0.0023100 0.6650260 0.0301867
739 Initial triggering of complement 79 0.0000000 0.6419002 0.0000000
502 FCERI mediated Ca+2 mobilization 92 0.0000000 0.6270683 0.0000000
506 FCGR3A-mediated IL10 synthesis 99 0.0000000 0.6249791 0.0000000
105 Antigen activates B Cell Receptor (BCR) leading to generation of second messengers 83 0.0000000 0.6247918 0.0000000
1441 Role of phospholipids in phagocytosis 88 0.0000000 0.6236185 0.0000000
874 Maturation of protein 3a_9683673 9 0.0020536 0.5932969 0.0279782
875 Maturation of protein 3a_9694719 9 0.0020536 0.5932969 0.0279782
774 Interleukin-21 signaling 9 0.0020766 0.5926588 0.0280923
159 Binding and Uptake of Ligands by Scavenger Receptors 90 0.0000000 0.5911481 0.0000000
283 Common Pathway of Fibrin Clot Formation 13 0.0003266 0.5754962 0.0067469
503 FCERI mediated MAPK activation 93 0.0000000 0.5587292 0.0000000
507 FCGR3A-mediated phagocytosis 121 0.0000000 0.5548696 0.0000000
823 Leishmania phagocytosis 121 0.0000000 0.5548696 0.0000000
1114 Parasite infection 121 0.0000000 0.5548696 0.0000000
1379 Regulation of actin dynamics for phagocytic cup formation 123 0.0000000 0.5399367 0.0000000
592 G1/S-Specific Transcription 29 0.0000010 0.5250107 0.0000371
289 Condensation of Prometaphase Chromosomes 11 0.0026475 0.5233799 0.0330249
1338 Regulation of Complement cascade 96 0.0000000 0.5145726 0.0000000
103 Anti-inflammatory response favouring Leishmania parasite infection 131 0.0000000 0.5141371 0.0000000
vec <- mtop$s.dist
names(vec) <- mtop$set
vec <- sort(vec)
par( mar = c(5.1, 25.1, 4.1, 2.1) )
barplot(vec,horiz=TRUE,las=1,cex.names=0.7,xlab="ES",main=myname)

par( mar = c(5.1, 4.1, 4.1, 2.1) )
mitch_report(res=mres,outfile=paste(myname,"_mitchreport.html",sep=""),overwrite=TRUE)
## Note: overwriting existing report
## Dataset saved as " /tmp/RtmpDAn7eA/avb_crphi_pod1_adj_mitchreport.rds ".
## 
## 
## processing file: mitch.Rmd
## 1/34                             
## 2/34 [checklibraries]            
## 3/34                             
## 4/34 [peek]                      
## 5/34                             
## 6/34 [metrics]                   
## 7/34                             
## 8/34 [scatterplot]
## 9/34                             
## 10/34 [contourplot]               
## 11/34                             
## 12/34 [input_geneset_metrics1]    
## 13/34                             
## 14/34 [input_geneset_metrics2]
## 15/34                             
## 16/34 [input_geneset_metrics3]
## 17/34                             
## 18/34 [echart1d]                  
## 19/34 [echart2d]                  
## 20/34                             
## 21/34 [heatmap]                   
## 22/34                             
## 23/34 [effectsize]                
## 24/34                             
## 25/34 [results_table]             
## 26/34                             
## 27/34 [results_table_complete]    
## 28/34                             
## 29/34 [detailed_geneset_reports1d]
## 30/34                             
## 31/34 [detailed_geneset_reports2d]
## 32/34                             
## 33/34 [session_info]              
## 34/34
## output file: /home/mark.ziemann@domain.internal.burnet.edu.au/projects/paddi_data/dge/mitch.knit.md
## /usr/bin/pandoc +RTS -K512m -RTS /home/mark.ziemann@domain.internal.burnet.edu.au/projects/paddi_data/dge/mitch.knit.md --to html4 --from markdown+autolink_bare_uris+tex_math_single_backslash --output /tmp/RtmpDAn7eA/mitch_report.html --lua-filter /usr/local/lib/R/site-library/rmarkdown/rmarkdown/lua/pagebreak.lua --lua-filter /usr/local/lib/R/site-library/rmarkdown/rmarkdown/lua/latex-div.lua --self-contained --variable bs3=TRUE --section-divs --template /usr/local/lib/R/site-library/rmarkdown/rmd/h/default.html --no-highlight --variable highlightjs=1 --variable theme=bootstrap --mathjax --variable 'mathjax-url=https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML' --include-in-header /tmp/RtmpDAn7eA/rmarkdown-str383e391874dbe6.html
## 
## Output created: /tmp/RtmpDAn7eA/mitch_report.html
## [1] TRUE

Multi-contrast enrichment anslysis.

l2 <- list("crp_t0_a"=crp_t0_a_adj,
"crp t0 b"=crp_t0_b_adj,
"crp eos a"=crp_eos_a_adj,
"crp eos b"=crp_eos_b_adj,
"crp _pod1 a"=crp_pod1_a_adj,
"crp pod1 b"=crp_pod1_b_adj,
"avb crplo t0"=avb_crplo_t0_adj,
"avb crphi t0"=avb_crphi_t0_adj,
"avb crplo eos"=avb_crplo_eos_adj,
"avb crphi eos"=avb_crphi_eos_adj,
"avb crplo pod1"=avb_crplo_pod1_adj,
"avb crphi pod1"=avb_crphi_pod1_adj)

m2 <- mitch_import(x=l2, DEtype="deseq2", geneTable=gt )
## Note: Mean no. genes in input = 21771.6666666667
## Note: no. genes in output = 21032
## Note: estimated proportion of input genes in output = 0.966
mm2 <- mitch_calc(x=m2,genesets=reactome,minsetsize=5,cores=16,priority="effect")
## Note: Enrichments with large effect sizes may not be 
##             statistically significant.
top <- head(subset (mm2$enrichment_result,p.adjustMANOVA<0.05),50)
top <- top[,c(1,4:15)]
rownames(top) <- top[,1]
top[,1] = NULL
colnames(top) <- gsub("^s\\.","",colnames(top))

colfunc <- colorRampPalette(c("blue", "white", "red"))

heatmap.2(as.matrix(top),trace="none",col=colfunc(25),scale="none",
    margins = c(7,20), cexRow=0.6, cexCol=0.7 )

as.matrix(top) |>
  kbl(caption="Top REACTOMEs in multi enrichment analysis") |>
  kable_paper("hover", full_width = F)
Top REACTOMEs in multi enrichment analysis
crp_t0_a crp.t0.b crp.eos.a crp.eos.b crp._pod1.a crp.pod1.b avb.crplo.t0 avb.crphi.t0 avb.crplo.eos avb.crphi.eos avb.crplo.pod1 avb.crphi.pod1
Sulfide oxidation to sulfate -0.7545251 0.4949922 -0.5282446 -0.5489418 -0.6024920 0.2471584 -0.5506159 0.6384648 0.1763542 0.5081562 -0.7342464 0.5458791
CD163 mediating an anti-inflammatory response -0.2419616 0.1677844 0.0896238 0.4070824 0.8194326 0.6062595 -0.4284389 0.2133395 -0.8105498 -0.7893241 -0.2168712 -0.3812072
Peptide chain elongation -0.8125523 0.1859742 -0.6870841 -0.8502888 -0.3449873 -0.3654931 -0.3635438 0.3761845 0.6538959 -0.0018532 -0.0460061 -0.0140329
Erythrocytes take up oxygen and release carbon dioxide 0.4282317 0.5443791 0.3304026 0.5161542 0.5928249 0.8020588 -0.4363717 0.4108646 -0.4079701 -0.6094989 0.0705215 0.2802038
Biosynthesis of Lipoxins (LX) -0.3777704 0.4643774 -0.0179619 0.3309395 0.3733790 0.7351057 -0.8469038 0.3733473 -0.7176670 -0.4231269 -0.1980405 0.2641016
CD22 mediated BCR regulation -0.5434113 0.3039165 -0.5276850 0.2817950 -0.3728039 0.5136566 -0.0557548 0.6858650 -0.5819802 0.3906898 -0.1298982 0.8099375
Classical antibody-mediated complement activation -0.6056489 0.2341269 -0.5704162 0.2366045 -0.3020065 0.4439796 -0.0552572 0.7703290 -0.5413720 0.4668956 -0.1317679 0.7503143
Scavenging of heme from plasma -0.5647915 0.2727324 -0.5343431 0.2744885 -0.2974371 0.4701154 -0.0973966 0.7463882 -0.5742450 0.4438427 -0.1181744 0.7749935
Eukaryotic Translation Elongation -0.7937285 0.1857574 -0.6690679 -0.8412244 -0.3357086 -0.3537696 -0.3477908 0.3682094 0.6463457 0.0055614 -0.0393235 0.0076398
Viral mRNA Translation -0.8025919 0.1654563 -0.6742788 -0.8344762 -0.3144344 -0.3588605 -0.3512829 0.3616275 0.6343253 -0.0195251 -0.0192946 -0.0189687
Cohesin Loading onto Chromatin 0.1659880 -0.6739416 0.6198173 0.4809152 0.7625630 -0.4167063 0.5489582 0.0163353 -0.1694986 -0.1615641 0.6714109 -0.0929312
Formation of a pool of free 40S subunits -0.7830230 0.1421056 -0.6549376 -0.8462097 -0.2844183 -0.4003475 -0.3383846 0.3544493 0.6370575 -0.0320691 -0.0164898 -0.0377255
SARS-CoV-1 modulates host translation machinery -0.7824480 0.1985987 -0.6437655 -0.8170075 -0.3477250 -0.3338678 -0.3548956 0.3464337 0.6332555 -0.0455722 -0.0400209 0.0037679
Creation of C4 and C2 activators -0.5878297 0.2243134 -0.5406395 0.2121921 -0.2987201 0.4103125 -0.0550943 0.7429335 -0.5134297 0.4767988 -0.1354042 0.7160876
Eukaryotic Translation Termination -0.7785783 0.1620980 -0.6615452 -0.7964128 -0.3190633 -0.3653766 -0.3105276 0.3567506 0.6344119 -0.0174278 -0.0155744 -0.0106794
Selenocysteine synthesis -0.7633067 0.1564138 -0.6536444 -0.8105226 -0.3218278 -0.3698864 -0.3083635 0.3558428 0.6270191 -0.0030861 -0.0162849 -0.0208272
Formation of ATP by chemiosmotic coupling -0.7949933 0.0566629 -0.8110080 -0.7102370 0.1571816 -0.2972587 -0.4227632 0.5712498 0.2827051 -0.1464496 -0.0369884 -0.0302970
Phosphorylation of Emi1 -0.3699864 0.1144298 -0.3859507 0.3339992 -0.1590095 0.6344684 0.3732680 0.7697454 -0.2916072 0.4468436 0.0671550 0.7811915
Fructose metabolism -0.6619942 0.2944590 -0.2563547 -0.3798675 -0.4615662 -0.3622558 -0.4717717 0.3366265 0.2657856 0.6766435 -0.6105724 -0.2846475
Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) -0.7614936 0.1435717 -0.6483734 -0.7688678 -0.3021788 -0.3551366 -0.3015955 0.3495011 0.5824091 -0.0354142 -0.0162792 -0.0230198
L13a-mediated translational silencing of Ceruloplasmin expression -0.7470007 0.0927424 -0.6260592 -0.8031314 -0.2256956 -0.4060362 -0.3343947 0.3319384 0.5763347 -0.0547604 0.0162321 -0.0420971
GTP hydrolysis and joining of the 60S ribosomal subunit -0.7325712 0.0838474 -0.6227842 -0.8006413 -0.2132622 -0.4033996 -0.3256563 0.3164099 0.5775825 -0.0610258 0.0223645 -0.0436696
Cap-dependent Translation Initiation -0.7175225 0.0864047 -0.6163045 -0.8011798 -0.2145277 -0.3914170 -0.3285071 0.3227729 0.5754072 -0.0523826 0.0045602 -0.0433325
Eukaryotic Translation Initiation -0.7175225 0.0864047 -0.6163045 -0.8011798 -0.2145277 -0.3914170 -0.3285071 0.3227729 0.5754072 -0.0523826 0.0045602 -0.0433325
FCGR activation -0.5403490 0.2093907 -0.4369907 0.3015565 -0.2567740 0.3911215 -0.0412101 0.6920717 -0.4973594 0.3661523 -0.0235027 0.7690064
SRP-dependent cotranslational protein targeting to membrane -0.7526006 0.0568831 -0.6579772 -0.7531359 -0.1997124 -0.3831860 -0.3133761 0.3599265 0.5359022 -0.0936882 0.0594051 0.0511536
Fructose catabolism -0.5632282 0.4345556 -0.2395301 -0.3512341 -0.4317021 -0.2436772 -0.6638417 0.2040519 0.0864888 0.6086936 -0.6035383 -0.3180577
Establishment of Sister Chromatid Cohesion 0.1439297 -0.6911833 0.3358762 0.3256268 0.6823955 -0.4116273 0.4673638 0.0019591 -0.2429129 -0.0275612 0.7725046 0.1275218
G2/M DNA replication checkpoint -0.4509535 -0.2228849 -0.2255291 0.1675465 0.3647215 0.5400200 0.1402673 0.6120417 -0.5925810 0.1351500 0.3612213 0.7501879
Response of EIF2AK4 (GCN2) to amino acid deficiency -0.7169758 0.1514505 -0.6232231 -0.7559708 -0.2502892 -0.3327070 -0.3474061 0.3133571 0.5651224 -0.0240947 -0.0155035 -0.0097565
NFE2L2 regulates pentose phosphate pathway genes -0.3371623 0.2299753 0.4170591 0.4182125 0.7758514 0.4873716 -0.2601907 0.4748740 -0.5950937 -0.3722888 -0.2341253 -0.1058076
Initial triggering of complement -0.5444270 0.2307191 -0.5118452 0.1644628 -0.2821137 0.3753338 -0.0581261 0.6967766 -0.4467185 0.4712043 -0.1410464 0.6369275
Protein repair -0.6190431 0.0014902 -0.1150639 -0.1029360 0.4722566 0.1702812 -0.7826183 0.2929389 -0.5412822 -0.4331621 -0.0330385 0.5610514
Formation of the ternary complex, and subsequently, the 43S complex -0.6965340 0.0761557 -0.5712984 -0.7782027 -0.1982288 -0.4181084 -0.3085116 0.2896692 0.5633958 -0.0863293 0.0426203 -0.0370802
Defective binding of VWF variant to GPIb:IX:V 0.2089219 0.2105959 -0.2830932 -0.4076949 0.2028345 0.5959481 -0.3908403 -0.0811433 -0.5491321 -0.4408903 -0.7476007 0.3900984
Enhanced binding of GP1BA variant to VWF multimer:collagen 0.2089219 0.2105959 -0.2830932 -0.4076949 0.2028345 0.5959481 -0.3908403 -0.0811433 -0.5491321 -0.4408903 -0.7476007 0.3900984
Role of LAT2/NTAL/LAB on calcium mobilization -0.5184522 0.1811163 -0.3997725 0.2925604 -0.2048503 0.3156991 -0.0708766 0.6486247 -0.5085831 0.3304781 -0.0163526 0.6814466
NR1H2 & NR1H3 regulate gene expression to limit cholesterol uptake -0.6386931 0.0837495 -0.2332715 -0.3348552 -0.0784420 0.2864222 0.2402530 0.6304561 0.3628953 0.2973986 -0.6833214 -0.3656727
Activation of the mRNA upon binding of the cap-binding complex and eIFs, and subsequent binding to 43S -0.6781431 0.0270331 -0.5499298 -0.7320704 -0.1406805 -0.4136287 -0.3097954 0.2844763 0.4857909 -0.1018315 0.0475308 -0.0689046
Modulation by Mtb of host immune system -0.8150637 -0.0349992 -0.4537523 -0.6214439 0.1229625 -0.2785052 -0.4999966 0.2807066 -0.0020860 -0.4610769 0.1456022 0.0266961
Translation initiation complex formation -0.6740348 0.0296574 -0.5467229 -0.7275149 -0.1381333 -0.4145740 -0.3028216 0.2867195 0.4874853 -0.1089510 0.0609835 -0.0592392
Ribosomal scanning and start codon recognition -0.6662156 0.0269578 -0.5559543 -0.7282234 -0.1250695 -0.4083923 -0.2988593 0.2753573 0.4870447 -0.1120139 0.0600086 -0.0702578
Phosphate bond hydrolysis by NUDT proteins -0.7169764 -0.1221607 -0.5332088 -0.7682895 -0.0642161 -0.4847223 -0.2694411 0.1545167 0.0441855 -0.2997316 0.1990623 -0.0517547
NR1H2 & NR1H3 regulate gene expression linked to lipogenesis -0.5695158 0.1899853 -0.2834618 0.0876617 -0.0164574 0.3894359 0.2342323 0.7106521 0.3078387 0.6515649 -0.3871290 -0.0995291
SARS-CoV-2 modulates host translation machinery -0.6054688 0.1771220 -0.5916850 -0.6845104 -0.2600793 -0.2685663 -0.2853068 0.2885319 0.5568094 -0.0148974 -0.0418580 -0.0057821
Selenoamino acid metabolism -0.6608327 0.0921879 -0.5610638 -0.6952318 -0.2299497 -0.3152284 -0.2570195 0.3057410 0.5209297 -0.0335479 0.0072648 -0.0511479
Type I hemidesmosome assembly -0.2404157 0.1954790 -0.0031274 0.4687500 0.1227764 0.5536411 0.0888865 0.6382824 0.1166286 0.4762533 -0.0843560 0.7222341
Mitochondrial translation elongation -0.5637825 0.0983202 -0.6863284 -0.6750464 -0.1959847 -0.3562209 -0.1953289 0.3690659 0.4599370 -0.0666136 0.0070640 0.0872282
Synthesis of PIPs at the late endosome membrane 0.3689514 -0.6200682 0.3203593 0.2172849 0.3845375 -0.5007849 0.3511424 -0.3139934 -0.4142308 -0.0347488 0.5600763 -0.1896588
Mitochondrial translation initiation -0.5407103 0.0718461 -0.6742240 -0.6913910 -0.2064326 -0.3705440 -0.1743270 0.3467216 0.4662719 -0.0722737 0.0241195 0.1093305
mitch_report(res=mm2,outfile="multireactomestratified_all_mitchreport.html",overwrite=TRUE)
## Dataset saved as " /tmp/RtmpDAn7eA/multireactomestratified_all_mitchreport.rds ".
## 
## 
## processing file: mitch.Rmd
## 1/34                             
## 2/34 [checklibraries]            
## 3/34                             
## 4/34 [peek]                      
## 5/34                             
## 6/34 [metrics]                   
## 7/34                             
## 8/34 [scatterplot]
## 9/34                             
## 10/34 [contourplot]
## 11/34                             
## 12/34 [input_geneset_metrics1]    
## 13/34                             
## 14/34 [input_geneset_metrics2]
## 15/34                             
## 16/34 [input_geneset_metrics3]    
## 17/34                             
## 18/34 [echart1d]                  
## 19/34 [echart2d]                  
## 20/34                             
## 21/34 [heatmap]
## 22/34                             
## 23/34 [effectsize]                
## 24/34                             
## 25/34 [results_table]             
## 26/34                             
## 27/34 [results_table_complete]    
## 28/34                             
## 29/34 [detailed_geneset_reports1d]
## 30/34                             
## 31/34 [detailed_geneset_reports2d]
## 32/34                             
## 33/34 [session_info]              
## 34/34
## output file: /home/mark.ziemann@domain.internal.burnet.edu.au/projects/paddi_data/dge/mitch.knit.md
## /usr/bin/pandoc +RTS -K512m -RTS /home/mark.ziemann@domain.internal.burnet.edu.au/projects/paddi_data/dge/mitch.knit.md --to html4 --from markdown+autolink_bare_uris+tex_math_single_backslash --output /tmp/RtmpDAn7eA/mitch_report.html --lua-filter /usr/local/lib/R/site-library/rmarkdown/rmarkdown/lua/pagebreak.lua --lua-filter /usr/local/lib/R/site-library/rmarkdown/rmarkdown/lua/latex-div.lua --self-contained --variable bs3=TRUE --section-divs --template /usr/local/lib/R/site-library/rmarkdown/rmd/h/default.html --no-highlight --variable highlightjs=1 --variable theme=bootstrap --mathjax --variable 'mathjax-url=https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML' --include-in-header /tmp/RtmpDAn7eA/rmarkdown-str383e39f542080.html
## 
## Output created: /tmp/RtmpDAn7eA/mitch_report.html
## [1] TRUE

This might work better if we work on each timepoint separately.

l2 <- list("crp_t0_a"=crp_t0_a_adj, "crp t0 b"=crp_t0_b_adj,
  "avb crplo t0"=avb_crplo_t0_adj, "avb crphi t0"=avb_crphi_t0_adj)
m2 <- mitch_import(x=l2, DEtype="deseq2", geneTable=gt )
## Note: Mean no. genes in input = 21935
## Note: no. genes in output = 21870
## Note: estimated proportion of input genes in output = 0.997
mm2 <- mitch_calc(x=m2,genesets=reactome,minsetsize=5,cores=16,priority="effect")
## Note: Enrichments with large effect sizes may not be 
##             statistically significant.
top <- head(subset (mm2$enrichment_result,p.adjustMANOVA<0.05),50)
top <- top[,c(1,4:7)]
rownames(top) <- top[,1]
top[,1] = NULL
colnames(top) <- gsub("^s\\.","",colnames(top))
colfunc <- colorRampPalette(c("blue", "white", "red"))
heatmap.2(as.matrix(top),trace="none",col=colfunc(25),scale="none",
    margins = c(7,20), cexRow=0.6, cexCol=0.7 )

as.matrix(top) |>
  kbl(caption="Top REACTOMEs in multi enrichment analysis stratified t0") |>
  kable_paper("hover", full_width = F)
Top REACTOMEs in multi enrichment analysis stratified t0
crp_t0_a crp.t0.b avb.crplo.t0 avb.crphi.t0
Biosynthesis of Lipoxins (LX) -0.3867545 0.4633187 -0.8455452 0.3817386
NR1H2 & NR1H3 regulate gene expression linked to triglyceride lipolysis in adipose -0.6480768 0.3623051 0.2137571 0.7470112
Formation of ATP by chemiosmotic coupling -0.7990618 0.0543936 -0.4210206 0.5772723
Protein repair -0.6253964 -0.0012806 -0.7807659 0.3025369
Biosynthesis of E-series 18(S)-resolvins -0.3304002 0.3824102 -0.8379511 0.3230277
Formation of annular gap junctions -0.7470906 0.1117017 -0.1898445 0.6685178
Glycosphingolipid transport -0.7715383 0.0083572 -0.0215171 0.6716958
Modulation by Mtb of host immune system -0.8191726 -0.0374605 -0.4978862 0.2875243
Peptide chain elongation -0.8159484 0.1840574 -0.3612197 0.3851253
Classical antibody-mediated complement activation -0.5800079 0.2416199 -0.0504784 0.7615491
Viral mRNA Translation -0.8061665 0.1635394 -0.3490062 0.3707051
NR1H2 & NR1H3 regulate gene expression linked to lipogenesis -0.5768914 0.1882948 0.2346194 0.7150993
Eukaryotic Translation Elongation -0.7971197 0.1838313 -0.3455162 0.3770319
Scavenging of heme from plasma -0.5409442 0.2791206 -0.0912272 0.7387811
Biosynthesis of EPA-derived SPMs -0.1457952 0.3828973 -0.8615075 0.1085346
Creation of C4 and C2 activators -0.5635405 0.2317873 -0.0504570 0.7354446
PTK6 Regulates RTKs and Their Effectors AKT1 and DOK1 -0.6468699 0.3037932 -0.2866139 0.5637487
SARS-CoV-1 modulates host translation machinery -0.7859480 0.1967726 -0.3527271 0.3556863
Phosphorylation of Emi1 -0.3787200 0.1115837 0.3730638 0.7739054
Formation of a pool of free 40S subunits -0.7868557 0.1401860 -0.3361004 0.3633714
Fructose metabolism -0.6674355 0.2927385 -0.4698937 0.3434962
Formyl peptide receptors bind formyl peptides and many other ligands -0.6187035 -0.2695029 -0.5606798 0.3120406
Eukaryotic Translation Termination -0.7823269 0.1601891 -0.3083629 0.3657818
Diseases of Mismatch Repair (MMR) 0.2591448 -0.6835491 0.5531489 -0.0673679
Selenocysteine synthesis -0.7670394 0.1543896 -0.3062164 0.3647253
Erythrocytes take up oxygen and release carbon dioxide 0.4209134 0.5430898 -0.4344391 0.4160650
Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) -0.7653626 0.1416099 -0.2994770 0.3584066
CD22 mediated BCR regulation -0.5144714 0.3109448 -0.0501061 0.6782824
Prevention of phagosomal-lysosomal fusion -0.6614875 0.1074415 -0.2848553 0.5366076
Initial triggering of complement -0.5245789 0.2371696 -0.0537770 0.6920181
Nef Mediated CD4 Down-regulation -0.6542193 0.1736781 -0.0547754 0.5903512
SRP-dependent cotranslational protein targeting to membrane -0.7565149 0.0546858 -0.3112007 0.3686715
Glyoxylate metabolism and glycine degradation -0.5337104 0.2109129 -0.3005937 0.6203153
L13a-mediated translational silencing of Ceruloplasmin expression -0.7511498 0.0906499 -0.3321231 0.3407733
VLDLR internalisation and degradation -0.6602029 0.1635293 -0.1365759 0.5604240
FCGR activation -0.5199340 0.2166411 -0.0371101 0.6874476
Cohesin Loading onto Chromatin 0.1551784 -0.6765142 0.5487008 0.0269991
Response of EIF2AK4 (GCN2) to amino acid deficiency -0.7211841 0.1495516 -0.3451626 0.3223475
GTP hydrolysis and joining of the 60S ribosomal subunit -0.7368549 0.0817513 -0.3234099 0.3252264
NR1H2 & NR1H3 regulate gene expression to control bile acid homeostasis -0.3966584 0.0672565 0.4351318 0.6384498
Pentose phosphate pathway -0.6339353 -0.0635142 -0.3574035 0.4668633
SUMO is conjugated to E1 (UBA2:SAE1) -0.6688223 -0.4728013 0.0020032 0.2822685
Cap-dependent Translation Initiation -0.7219937 0.0843027 -0.3263144 0.3316100
Eukaryotic Translation Initiation -0.7219937 0.0843027 -0.3263144 0.3316100
Synthesis of PIPs at the late endosome membrane 0.3588079 -0.6226643 0.3516629 -0.3058985
Synthesis of 5-eicosatetraenoic acids -0.2730314 0.3411962 -0.6909325 0.2535856
Regulation of NFE2L2 gene expression 0.0365360 0.4139260 0.4439210 0.5929352
Retrograde neurotrophin signalling -0.5940464 0.0922546 -0.1446457 0.5821438
Establishment of Sister Chromatid Cohesion 0.1342114 -0.6938394 0.4672051 0.0117821
Role of LAT2/NTAL/LAB on calcium mobilization -0.4987575 0.1888861 -0.0659310 0.6455545
#mitch_report(res=mm2,outfile="multireactomestratified_t0_mitchreport.html",overwrite=TRUE)

l2 <- list("crp_eos_a"=crp_eos_a_adj, "crp eos b"=crp_eos_b_adj,
  "avb crplo eos"=avb_crplo_eos_adj, "avb crphi eos"=avb_crphi_eos_adj)
m2 <- mitch_import(x=l2, DEtype="deseq2", geneTable=gt )
## Note: Mean no. genes in input = 22067
## Note: no. genes in output = 21999
## Note: estimated proportion of input genes in output = 0.997
mm2 <- mitch_calc(x=m2,genesets=reactome,minsetsize=5,cores=16,priority="effect")
## Note: Enrichments with large effect sizes may not be 
##             statistically significant.
top <- head(subset (mm2$enrichment_result,p.adjustMANOVA<0.05),50)
top <- top[,c(1,4:7)]
rownames(top) <- top[,1]
top[,1] = NULL
colnames(top) <- gsub("^s\\.","",colnames(top))
colfunc <- colorRampPalette(c("blue", "white", "red"))
heatmap.2(as.matrix(top),trace="none",col=colfunc(25),scale="none",
    margins = c(7,20), cexRow=0.6, cexCol=0.7 )

as.matrix(top) |>
  kbl(caption="Top REACTOMEs in multi enrichment analysis stratified EOS") |>
  kable_paper("hover", full_width = F)
Top REACTOMEs in multi enrichment analysis stratified EOS
crp_eos_a crp.eos.b avb.crplo.eos avb.crphi.eos
RUNX1 regulates transcription of genes involved in BCR signaling 0.5562831 0.5473863 -0.7500114 -0.7757468
Peptide chain elongation -0.6817362 -0.8467717 0.6603553 0.0087970
Formation of xylulose-5-phosphate -0.5771028 -0.6573611 0.5938529 0.6981904
Eukaryotic Translation Elongation -0.6644667 -0.8382738 0.6530513 0.0159410
Formation of a pool of free 40S subunits -0.6511485 -0.8436330 0.6442221 -0.0213781
Viral mRNA Translation -0.6690817 -0.8311226 0.6409421 -0.0086580
SARS-CoV-1 modulates host translation machinery -0.6478269 -0.8201015 0.6416928 -0.0368751
Selenocysteine synthesis -0.6490937 -0.8080701 0.6339397 0.0075031
Eukaryotic Translation Termination -0.6569322 -0.7940374 0.6410548 -0.0067102
Phenylalanine metabolism -0.4335910 -0.5975084 0.7369101 0.5580067
L13a-mediated translational silencing of Ceruloplasmin expression -0.6233642 -0.8017651 0.5844671 -0.0441766
GTP hydrolysis and joining of the 60S ribosomal subunit -0.6201777 -0.7993759 0.5856885 -0.0503810
Cap-dependent Translation Initiation -0.6142199 -0.8002121 0.5835718 -0.0419248
Eukaryotic Translation Initiation -0.6142199 -0.8002121 0.5835718 -0.0419248
Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) -0.6441316 -0.7669802 0.5898119 -0.0245771
MET activates PI3K/AKT signaling 0.7768482 0.3518596 -0.5667546 -0.5410203
SRP-dependent cotranslational protein targeting to membrane -0.6547592 -0.7528227 0.5446763 -0.0826633
Response of EIF2AK4 (GCN2) to amino acid deficiency -0.6197699 -0.7547760 0.5730024 -0.0136518
Formation of ATP by chemiosmotic coupling -0.8137176 -0.7152782 0.2941717 -0.1376996
Formation of the ternary complex, and subsequently, the 43S complex -0.5757066 -0.7819498 0.5727102 -0.0777560
CD163 mediating an anti-inflammatory response 0.0480724 0.2985498 -0.7613764 -0.7644889
Mitochondrial translation initiation -0.6774527 -0.6965012 0.4756280 -0.0641837
Mitochondrial translation elongation -0.6894478 -0.6802714 0.4693414 -0.0585665
SARS-CoV-2 modulates host translation machinery -0.5956580 -0.6889368 0.5656083 -0.0063335
Mitochondrial translation termination -0.6603892 -0.6821002 0.4652994 -0.0644525
Ribosomal scanning and start codon recognition -0.5604277 -0.7322396 0.4966297 -0.1035929
Activation of the mRNA upon binding of the cap-binding complex and eIFs, and subsequent binding to 43S -0.5544103 -0.7360382 0.4954529 -0.0934320
Translation initiation complex formation -0.5512055 -0.7315512 0.4970760 -0.1005644
Mitochondrial translation -0.6409900 -0.6716841 0.4665333 -0.0619740
APOBEC3G mediated resistance to HIV-1 infection -0.4541966 -0.5093935 0.7707920 0.1338001
Selenoamino acid metabolism -0.5591403 -0.6956697 0.5292062 -0.0234247
Folding of actin by CCT/TriC -0.5636182 -0.5241985 0.5604439 -0.3066169
YAP1- and WWTR1 (TAZ)-stimulated gene expression 0.2499870 0.6402718 -0.5627891 -0.4596477
Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC) -0.5284393 -0.6620180 0.5283592 -0.0414559
Nonsense-Mediated Decay (NMD) -0.5284393 -0.6620180 0.5283592 -0.0414559
Regulation of expression of SLITs and ROBOs -0.5355330 -0.6597718 0.5009973 -0.1047920
Arachidonate production from DAG -0.8172593 -0.4496317 -0.1967991 0.2641993
Phosphate bond hydrolysis by NUDT proteins -0.5383776 -0.7731383 0.0518760 -0.2936652
Translation -0.6010502 -0.6188236 0.4698036 -0.0595130
LTC4-CYSLTR mediated IL4 production 0.2796763 -0.5653360 0.3885060 0.6466491
Vpu mediated degradation of CD4 -0.4668068 -0.6472514 0.4827449 -0.2853790
RUNX1 and FOXP3 control the development of regulatory T lymphocytes (Tregs) 0.0382800 0.6761457 -0.5626598 -0.3959274
Vif-mediated degradation of APOBEC3G -0.5064480 -0.6277394 0.4231337 -0.3192836
Complex III assembly -0.6616111 -0.6002240 0.3217027 0.0227125
Classical antibody-mediated complement activation -0.5762855 0.2384993 -0.5379462 0.4698520
Scavenging of heme from plasma -0.5408181 0.2753379 -0.5710090 0.4471092
Regulation of activated PAK-2p34 by proteasome mediated degradation -0.4718913 -0.6080010 0.4272613 -0.3357298
Erythrocytes take up oxygen and release carbon dioxide 0.3271060 0.5089513 -0.3993270 -0.6016863
Cristae formation -0.6654306 -0.5625747 0.3298045 -0.1158485
Ubiquitin Mediated Degradation of Phosphorylated Cdc25A -0.5150297 -0.6187170 0.4134137 -0.2480617
#mitch_report(res=mm2,outfile="multireactomestratified_eos_mitchreport.html",overwrite=TRUE)

l2 <- list("crp_pod1_a"=crp_pod1_a_adj, "crp pod1 b"=crp_pod1_b_adj,
  "avb crplo pod1"=avb_crplo_pod1_adj, "avb crphi pod1"=avb_crphi_pod1_adj)
m2 <- mitch_import(x=l2, DEtype="deseq2", geneTable=gt )
## Note: Mean no. genes in input = 21313
## Note: no. genes in output = 21253
## Note: estimated proportion of input genes in output = 0.997
mm2 <- mitch_calc(x=m2,genesets=reactome,minsetsize=5,cores=16,priority="effect")
## Note: Enrichments with large effect sizes may not be 
##             statistically significant.
top <- head(subset (mm2$enrichment_result,p.adjustMANOVA<0.05),50)
top <- top[,c(1,4:7)]
rownames(top) <- top[,1]
top[,1] = NULL
colnames(top) <- gsub("^s\\.","",colnames(top))
colfunc <- colorRampPalette(c("blue", "white", "red"))
heatmap.2(as.matrix(top),trace="none",col=colfunc(25),scale="none",
    margins = c(7,20), cexRow=0.6, cexCol=0.7 )

as.matrix(top) |>
  kbl(caption="Top REACTOMEs in multi enrichment analysis stratified POD1") |>
  kable_paper("hover", full_width = F)
Top REACTOMEs in multi enrichment analysis stratified POD1
crp_pod1_a crp.pod1.b avb.crplo.pod1 avb.crphi.pod1
MET activates PI3K/AKT signaling 0.8254330 -0.4128765 0.7083396 -0.2995858
Sulfide oxidation to sulfate -0.6046310 0.2428840 -0.7347703 0.5470256
Establishment of Sister Chromatid Cohesion 0.6802732 -0.4141195 0.7730825 0.1289298
CD163 mediating an anti-inflammatory response 0.8177689 0.6035185 -0.2169922 -0.3801718
Cohesin Loading onto Chromatin 0.7608153 -0.4192440 0.6718637 -0.0912018
Defects of platelet adhesion to exposed collagen 0.0178692 0.6446714 -0.7466152 0.4375833
Insulin-like Growth Factor-2 mRNA Binding Proteins (IGF2BPs/IMPs/VICKZs) bind RNA 0.7189564 0.5092484 0.4001506 0.4583863
G2/M DNA replication checkpoint 0.3610881 0.5359563 0.3615211 0.7507718
Defective binding of VWF variant to GPIb:IX:V 0.1990776 0.5923381 -0.7481928 0.3913027
Enhanced binding of GP1BA variant to VWF multimer:collagen 0.1990776 0.5923381 -0.7481928 0.3913027
CD22 mediated BCR regulation -0.3672206 0.5163059 -0.1189545 0.8133555
Erythrocytes take up oxygen and release carbon dioxide 0.5902960 0.8004330 0.0711260 0.2812630
Wax and plasmalogen biosynthesis 0.5824736 -0.6010919 0.5730422 -0.1152485
Phosphorylation of Emi1 -0.1619366 0.6310224 0.0674448 0.7816476
Scavenging of heme from plasma -0.2942022 0.4724166 -0.1092453 0.7784045
NFE2L2 regulates pentose phosphate pathway genes 0.7738644 0.4843493 -0.2344199 -0.1040127
Activation of caspases through apoptosome-mediated cleavage 0.3170644 -0.5045104 0.6727067 0.2985676
Classical antibody-mediated complement activation -0.2987625 0.4468467 -0.1224701 0.7541541
Type I hemidesmosome assembly 0.1201224 0.5509885 -0.0846787 0.7228289
ARMS-mediated activation 0.5235406 -0.3156838 0.6579439 0.1804176
FCGR activation -0.2545463 0.3941018 -0.0164416 0.7723287
Fructose metabolism -0.4634688 -0.3649494 -0.6109789 -0.2830516
Creation of C4 and C2 activators -0.2957188 0.4135281 -0.1263310 0.7203392
Biosynthesis of Lipoxins (LX) 0.3713779 0.7323387 -0.1977691 0.2655120
Neurotransmitter clearance 0.2082019 0.0614518 -0.6183932 -0.5650837
Synthesis of PIPs at the late endosome membrane 0.3813714 -0.5026834 0.5608357 -0.1882377
Response to metal ions 0.5293139 0.5816821 0.1614973 0.2812162
Fructose catabolism -0.4336032 -0.2467244 -0.6036521 -0.3165286
SMAC (DIABLO) binds to IAPs 0.2033324 -0.4876750 0.5428787 0.3550652
SMAC(DIABLO)-mediated dissociation of IAP:caspase complexes 0.2033324 -0.4876750 0.5428787 0.3550652
SMAC, XIAP-regulated apoptotic response 0.2033324 -0.4876750 0.5428787 0.3550652
SUMO is proteolytically processed 0.1991967 -0.5487990 0.5182222 0.2759605
Scavenging by Class A Receptors 0.6578167 0.1282681 0.2196206 -0.4144047
Initial triggering of complement -0.2799182 0.3783384 -0.1328510 0.6419002
Common Pathway of Fibrin Clot Formation 0.2776402 0.4569535 -0.1834782 0.5754962
Lysosphingolipid and LPA receptors -0.4813277 0.3257954 -0.3417757 0.4322397
Unwinding of DNA -0.3672928 0.2301995 0.0271331 0.6684870
Mitotic Telophase/Cytokinesis 0.5578661 -0.1762784 0.5238809 0.1139577
Regulation of IFNG signaling 0.5575592 -0.0247187 0.5526222 -0.0013251
Role of LAT2/NTAL/LAB on calcium mobilization -0.2033667 0.3194894 -0.0095182 0.6860033
STAT5 activation downstream of FLT3 ITD mutants 0.5944999 0.4826252 0.0123015 -0.1456307
MET activates RAP1 and RAC1 0.6576378 -0.1930142 0.3386527 -0.1340959
Maturation of protein 3a_9683673 0.1829222 0.3807820 0.2558003 0.5932969
Maturation of protein 3a_9694719 0.1829222 0.3807820 0.2558003 0.5932969
Maturation of hRSV A proteins 0.5255686 -0.3835289 0.3964436 -0.1108648
OAS antiviral response -0.1582490 -0.3463050 0.5183573 0.4216875
Protein repair 0.4695722 0.1666118 -0.0330243 0.5620244
Microtubule-dependent trafficking of connexons from Golgi to the plasma membrane 0.2936538 0.5563768 -0.2654458 0.3115986
Transport of connexons to the plasma membrane 0.2936538 0.5563768 -0.2654458 0.3115986
Butyrophilin (BTN) family interactions -0.4953255 -0.2848091 -0.4092831 -0.2621852
#mitch_report(res=mm2,outfile="multireactomestratified_pod1_mitchreport.html",overwrite=TRUE)

Session information

For reproducibility

sessionInfo()
## R version 4.4.1 (2024-06-14)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 22.04.5 LTS
## 
## Matrix products: default
## BLAS:   /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.10.0 
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8          LC_NUMERIC=C                 
##  [3] LC_TIME=en_US.UTF-8           LC_COLLATE=en_US.UTF-8       
##  [5] LC_MONETARY=en_US.UTF-8       LC_MESSAGES=en_US.UTF-8      
##  [7] LC_PAPER=en_US.UTF-8          LC_NAME=en_US.UTF-8          
##  [9] LC_ADDRESS=en_US.UTF-8        LC_TELEPHONE=en_US.UTF-8     
## [11] LC_MEASUREMENT=en_US.UTF-8    LC_IDENTIFICATION=en_US.UTF-8
## 
## time zone: Australia/Melbourne
## tzcode source: system (glibc)
## 
## attached base packages:
## [1] stats4    stats     graphics  grDevices utils     datasets  methods  
## [8] base     
## 
## other attached packages:
##  [1] pkgload_1.4.0               GGally_2.2.1               
##  [3] beeswarm_0.4.0              gtools_3.9.5               
##  [5] tibble_3.2.1                echarts4r_0.4.5            
##  [7] xlsx_0.6.5                  DT_0.33                    
##  [9] eulerr_7.0.2                ggplot2_3.5.1              
## [11] kableExtra_1.4.0            MASS_7.3-61                
## [13] mitch_1.17.4                DESeq2_1.44.0              
## [15] SummarizedExperiment_1.34.0 Biobase_2.64.0             
## [17] MatrixGenerics_1.16.0       matrixStats_1.4.1          
## [19] GenomicRanges_1.56.1        GenomeInfoDb_1.40.1        
## [21] IRanges_2.38.1              S4Vectors_0.42.1           
## [23] BiocGenerics_0.50.0         dplyr_1.1.4                
## [25] WGCNA_1.73                  fastcluster_1.2.6          
## [27] dynamicTreeCut_1.63-1       reshape2_1.4.4             
## [29] gplots_3.2.0               
## 
## loaded via a namespace (and not attached):
##   [1] RColorBrewer_1.1-3      rstudioapi_0.17.1       jsonlite_1.8.9         
##   [4] magrittr_2.0.3          farver_2.1.2            rmarkdown_2.28         
##   [7] zlibbioc_1.50.0         vctrs_0.6.5             memoise_2.0.1.9000     
##  [10] base64enc_0.1-3         progress_1.2.3          htmltools_0.5.8.1      
##  [13] S4Arrays_1.4.1          SparseArray_1.4.8       Formula_1.2-5          
##  [16] sass_0.4.9              KernSmooth_2.23-24      bslib_0.8.0            
##  [19] htmlwidgets_1.6.4       plyr_1.8.9              impute_1.78.0          
##  [22] cachem_1.1.0            mime_0.12               lifecycle_1.0.4        
##  [25] iterators_1.0.14        pkgconfig_2.0.3         Matrix_1.7-0           
##  [28] R6_2.5.1                fastmap_1.2.0           GenomeInfoDbData_1.2.12
##  [31] shiny_1.9.1             digest_0.6.37           colorspace_2.1-1       
##  [34] AnnotationDbi_1.66.0    Hmisc_5.1-3             RSQLite_2.3.7          
##  [37] labeling_0.4.3          fansi_1.0.6             httr_1.4.7             
##  [40] abind_1.4-8             compiler_4.4.1          bit64_4.5.2            
##  [43] withr_3.0.1             doParallel_1.0.17       htmlTable_2.4.3        
##  [46] backports_1.5.0         BiocParallel_1.38.0     DBI_1.2.3              
##  [49] ggstats_0.7.0           highr_0.11              DelayedArray_0.30.1    
##  [52] caTools_1.18.3          tools_4.4.1             foreign_0.8-87         
##  [55] httpuv_1.6.15           nnet_7.3-19             glue_1.8.0             
##  [58] promises_1.3.0          grid_4.4.1              checkmate_2.3.2        
##  [61] cluster_2.1.6           generics_0.1.3          gtable_0.3.5           
##  [64] preprocessCore_1.66.0   tidyr_1.3.1             hms_1.1.3              
##  [67] data.table_1.16.0       xml2_1.3.6              utf8_1.2.4             
##  [70] XVector_0.44.0          foreach_1.5.2           pillar_1.9.0           
##  [73] stringr_1.5.1           later_1.3.2             rJava_1.0-11           
##  [76] splines_4.4.1           lattice_0.22-6          survival_3.7-0         
##  [79] bit_4.5.0               tidyselect_1.2.1        GO.db_3.19.1           
##  [82] locfit_1.5-9.10         Biostrings_2.72.1       knitr_1.48             
##  [85] gridExtra_2.3           svglite_2.1.3           xfun_0.48              
##  [88] stringi_1.8.4           UCSC.utils_1.0.0        yaml_2.3.10            
##  [91] xlsxjars_0.6.1          evaluate_1.0.1          codetools_0.2-20       
##  [94] cli_3.6.3               rpart_4.1.23            xtable_1.8-4           
##  [97] systemfonts_1.1.0       munsell_0.5.1           jquerylib_0.1.4        
## [100] Rcpp_1.0.13             png_0.1-8               parallel_4.4.1         
## [103] blob_1.2.4              prettyunits_1.2.0       bitops_1.0-9           
## [106] viridisLite_0.4.2       scales_1.3.0            purrr_1.0.2            
## [109] crayon_1.5.3            rlang_1.1.4             KEGGREST_1.44.1