Source: https://github.com/markziemann/mesangial_rageko
Looking at doing comparison of control and RAGE KO Mouse mesangial cells RNA-seq and miRNA-seq.
RAGE KO data sequenced at Baker. 61 nt length.
WT data sequenced at BGI with 91 nt length.
Quality trimming with skewer 0.2.2 to ensure 3’ end base quality > 20.
GENECODE mouse transcriptome v30 was downloaded and indexed.
Kallisto 0.46.0 was used for mapping paired end reads to the transcriptome.
Count data was loaded into R, followed by DE analysis with DESeq2.
Enrichment analysis was performed with mitch, using REACTOME pathways.
OS, R and package versions are shown in the session info section at the end of this report.
suppressPackageStartupMessages({
library("reshape2")
library("DESeq2")
library("gplots")
library("mitch")
library("dplyr")
library("biomaRt")
library("kableExtra")
library("beeswarm")
})
tmp <- read.table("3col.tsv.gz",header=F)
x <- as.matrix(acast(tmp, V2~V1, value.var="V3", fun.aggregate = sum))
x <- as.data.frame(x)
txinfo <- data.frame(do.call(rbind,strsplit(rownames(x),"\\|")))
colnames(txinfo) <- c("tx","GeneID","altGeneID","altTxID",
"txname","genename","length","biotype")
x$GeneID <- paste(txinfo$GeneID , txinfo$genename)
# write out transcript table
x2 <- x
x2$GeneID = NULL
xrpm <- apply(x2, 2, function(x){x/sum(x,na.rm=T)}) * 1000000
colnames(xrpm) <- gsub("$","_RPM",colnames(xrpm))
colnames(x2) <- gsub("$","_counts",colnames(x2))
x2 <- cbind(xrpm,x2)
write.table(x2,file="Tx_RPM_count_table_biotype.tsv")
xx <- aggregate(. ~ GeneID, x , sum)
colnames(xx) <- gsub("mRNA_","",colnames(xx))
rownames(xx) <- xx$GeneID
xx$GeneID <- NULL
xx <- round(xx)
dim(xx)
## [1] 56691 12
head(xx)
## rageko_ctrl_1 rageko_ctrl_2 rageko_ctrl_3
## ENSMUSG00000000001.5 Gnai3 2856 2448 2865
## ENSMUSG00000000003.16 Pbsn 0 0 0
## ENSMUSG00000000028.16 Cdc45 124 95 112
## ENSMUSG00000000031.18 H19 1 0 1
## ENSMUSG00000000037.18 Scml2 9 7 12
## ENSMUSG00000000049.12 Apoh 4 2 4
## rageko_TGF_1 rageko_TGF_2 rageko_TGF_3 wt_ctrl_1_R1
## ENSMUSG00000000001.5 Gnai3 2279 2047 2717 727
## ENSMUSG00000000003.16 Pbsn 0 0 0 0
## ENSMUSG00000000028.16 Cdc45 102 89 114 28
## ENSMUSG00000000031.18 H19 0 0 0 1452
## ENSMUSG00000000037.18 Scml2 7 6 9 0
## ENSMUSG00000000049.12 Apoh 0 1 0 4
## wt_ctrl_2_R1 wt_ctrl_3_R1 wt_TGF_1_R1 wt_TGF_2_R1
## ENSMUSG00000000001.5 Gnai3 780 621 1127 1150
## ENSMUSG00000000003.16 Pbsn 0 0 0 0
## ENSMUSG00000000028.16 Cdc45 29 31 49 52
## ENSMUSG00000000031.18 H19 1099 1065 11 6
## ENSMUSG00000000037.18 Scml2 6 1 1 3
## ENSMUSG00000000049.12 Apoh 4 5 0 0
## wt_TGF_3_R1
## ENSMUSG00000000001.5 Gnai3 1136
## ENSMUSG00000000003.16 Pbsn 0
## ENSMUSG00000000028.16 Cdc45 52
## ENSMUSG00000000031.18 H19 6
## ENSMUSG00000000037.18 Scml2 2
## ENSMUSG00000000049.12 Apoh 0
write.table(x=xx,file="mRNA_count_matrix.tsv",sep="\t")
Now quantify the gene biotypes. Starting with all samples.
txinfo2 <- txinfo
txinfo2$gene <- paste(txinfo2$GeneID , txinfo2$genename)
biotype <- unique(txinfo2[,c("gene","biotype")])
xxbiotype <- merge(xx,biotype,by.x=0,by.y="gene")
xxbiotype$Row.names=NULL
xxbiotype <- aggregate(. ~ biotype,xxbiotype,sum)
rownames(xxbiotype) <- xxbiotype$biotype
xxbiotype$biotype = NULL
# remove biotypes with very few reads
xxbiotype <- xxbiotype[which(rowMeans(xxbiotype)>10),]
# keep top 10 classes for chart
n=10
xxbiotype <- xxbiotype[tail(order(rowMeans(xxbiotype)),n),]
# make percent
xxbiotype2 <- apply(xxbiotype, 2, function(x){x*100/sum(x,na.rm=T)})
# create color palette:
library(RColorBrewer)
pal <- brewer.pal(n, "Paired")
par(mfrow=c(1,2))
par(mar=c(10,5,3,1))
barplot(as.matrix(xxbiotype2),col=pal,las=2)
plot.new()
legend("topleft", legend=rev(rownames(xxbiotype2)),fill=rev(pal),bg="white",cex=1)
#restore default setting
par(mar=c(5.1, 4.1, 4.1, 2.1))
Now with just the samples not treated with TGFb.
txinfo2 <- txinfo
txinfo2$gene <- paste(txinfo2$GeneID , txinfo2$genename)
biotype <- unique(txinfo2[,c("gene","biotype")])
xxbiotype <- merge(xx,biotype,by.x=0,by.y="gene")
xxbiotype$Row.names=NULL
xxbiotype <- aggregate(. ~ biotype,xxbiotype,sum)
rownames(xxbiotype) <- xxbiotype$biotype
xxbiotype$biotype = NULL
# remove TGFb samples
xxbiotype <- xxbiotype[,grep("TGF",colnames(xxbiotype),invert=TRUE)]
# remove biotypes with very few reads
xxbiotype <- xxbiotype[which(rowMeans(xxbiotype)>10),]
# keep top 10 classes for chart
n=10
xxbiotype <- xxbiotype[tail(order(rowMeans(xxbiotype)),n),]
# make percent
xxbiotype2 <- apply(xxbiotype, 2, function(x){x*100/sum(x,na.rm=T)})
# create color palette:
library(RColorBrewer)
pal <- brewer.pal(n, "Paired")
par(mfrow=c(1,2))
par(mar=c(10,5,3,1))
barplot(as.matrix(xxbiotype2),col=pal,las=2)
plot.new()
legend("topleft", legend=rev(rownames(xxbiotype2)),fill=rev(pal),bg="white",cex=1)
#restore default setting
par(mar=c(5.1, 4.1, 4.1, 2.1))
#colnames(xx) <- sapply(strsplit(colnames(xx),"_"),"[[",1)
mysamples <- colnames(xx)
ko <- as.numeric(grepl("ko",mysamples))
tgf <- as.numeric(grepl("TGF",mysamples))
ss <- data.frame(mysamples,ko,tgf)
rownames(ss) <- mysamples
ss
## mysamples ko tgf
## rageko_ctrl_1 rageko_ctrl_1 1 0
## rageko_ctrl_2 rageko_ctrl_2 1 0
## rageko_ctrl_3 rageko_ctrl_3 1 0
## rageko_TGF_1 rageko_TGF_1 1 1
## rageko_TGF_2 rageko_TGF_2 1 1
## rageko_TGF_3 rageko_TGF_3 1 1
## wt_ctrl_1_R1 wt_ctrl_1_R1 0 0
## wt_ctrl_2_R1 wt_ctrl_2_R1 0 0
## wt_ctrl_3_R1 wt_ctrl_3_R1 0 0
## wt_TGF_1_R1 wt_TGF_1_R1 0 1
## wt_TGF_2_R1 wt_TGF_2_R1 0 1
## wt_TGF_3_R1 wt_TGF_3_R1 0 1
TODO: rRNA carryover.
par(mar=c(5,8,3,1))
barplot(colSums(xx),horiz=TRUE,las=1,xlab="num reads",col=ss$cols)
grid()
And correlation heat map.
par(mar=c(5,5,3,3))
mds <- cmdscale(dist(t(xx)))
plot(mds, xlab="Coordinate 1", ylab="Coordinate 2",
type = "p",bty="n", cex=4 )
text(mds, labels=rownames(mds) ,col="black")
heatmap.2(cor(xx),trace="n",main="Pearson correlation heatmap",margin=c(8,8),cexRow=0.7,cexCol=0.7)
Compare wt control to RAGE KO control.
maplot <- function(de,contrast_name) {
de <- de[which(!is.na(de$padj)),]
sig <-subset(de, padj < 0.05 )
up <-rownames(subset(de, padj < 0.05 & log2FoldChange > 0))
dn <-rownames(subset(de, padj < 0.05 & log2FoldChange < 0))
GENESUP <- length(up)
GENESDN <- length(dn)
DET=nrow(de)
SUBHEADER = paste(GENESUP, "up, ", GENESDN, "down", DET, "detected")
ns <-subset(de, padj > 0.05 )
plot(log2(de$baseMean),de$log2FoldChange,
xlab="log2 basemean", ylab="log2 foldchange",
pch=19, cex=0.5, col="dark gray",
main=contrast_name, cex.main=1)
points(log2(sig$baseMean),sig$log2FoldChange,
pch=19, cex=0.5, col="red")
mtext(SUBHEADER,cex = 1)
}
make_volcano <- function(de,name) {
de <- de[which(!is.na(de$padj)),]
de$pvalue[which(de$pvalue==0)] <- 1e-320
sig <- subset(de,padj<0.05)
N_SIG=nrow(sig)
N_UP=nrow(subset(sig,log2FoldChange>0))
N_DN=nrow(subset(sig,log2FoldChange<0))
DET=nrow(de)
HEADER=paste(N_SIG,"@5%FDR,", N_UP, "up", N_DN, "dn", DET, "detected")
plot(de$log2FoldChange,-log10(de$pval),cex=0.5,pch=19,col="darkgray",
main=name, xlab="log2 FC", ylab="-log10 pval")
mtext(HEADER)
grid()
points(sig$log2FoldChange,-log10(sig$pval),cex=0.5,pch=19,col="red")
}
ss1 <- subset(ss,tgf==0)
xx1 <- xx[,which(colnames(xx) %in% rownames(ss1) )]
dim(xx1)
## [1] 56691 6
xx1 <- xx1[which(rowMeans(xx1)>10),]
dim(xx1)
## [1] 16920 6
dds <- DESeqDataSetFromMatrix(countData = xx1 , colData = ss1 , design = ~ ko )
## converting counts to integer mode
## the design formula contains one or more numeric variables with integer values,
## specifying a model with increasing fold change for higher values.
## did you mean for this to be a factor? if so, first convert
## this variable to a factor using the factor() function
res <- DESeq(dds)
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
z <- results(res)
vsd <- vst(dds, blind=FALSE)
zz <- cbind(as.data.frame(z),assay(vsd))
dge <- as.data.frame(zz[order(zz$pvalue),])
dge[1:20,1:6] %>% kbl(caption = "Top gene expression differences") %>%
kable_paper("hover", full_width = F)
baseMean | log2FoldChange | lfcSE | stat | pvalue | padj | |
---|---|---|---|---|---|---|
ENSMUSG00000001020.9 S100a4 | 4192.9386 | 5.170496 | 0.1377328 | 37.54005 | 0 | 0 |
ENSMUSG00000020044.14 Timp3 | 10285.4824 | 2.798266 | 0.0714929 | 39.14049 | 0 | 0 |
ENSMUSG00000020256.15 Aldh1l2 | 3821.4378 | 5.927939 | 0.1206065 | 49.15108 | 0 | 0 |
ENSMUSG00000022037.16 Clu | 4747.7435 | -7.309490 | 0.1278150 | -57.18804 | 0 | 0 |
ENSMUSG00000023036.15 Pcdhgc4 | 1683.2516 | -5.431429 | 0.1290685 | -42.08175 | 0 | 0 |
ENSMUSG00000027204.14 Fbn1 | 4626.3922 | 4.515813 | 0.0992572 | 45.49608 | 0 | 0 |
ENSMUSG00000029661.17 Col1a2 | 55636.8192 | 11.118047 | 0.1666730 | 66.70573 | 0 | 0 |
ENSMUSG00000029810.16 Tmem176b | 2962.7398 | -3.721489 | 0.0945140 | -39.37500 | 0 | 0 |
ENSMUSG00000035202.9 Lars2 | 440443.9343 | 7.995812 | 0.1385554 | 57.70843 | 0 | 0 |
ENSMUSG00000037071.4 Scd1 | 6218.4972 | 3.718488 | 0.0894171 | 41.58586 | 0 | 0 |
ENSMUSG00000040152.9 Thbs1 | 13191.7357 | 4.102414 | 0.0771886 | 53.14789 | 0 | 0 |
ENSMUSG00000069833.14 Ahnak | 36337.4655 | 3.850237 | 0.0825342 | 46.65023 | 0 | 0 |
ENSMUSG00000089774.3 Slc5a3 | 3102.6441 | 4.271342 | 0.1133767 | 37.67390 | 0 | 0 |
ENSMUSG00000101249.2 Gm29216 | 134092.2407 | -4.575209 | 0.0892471 | -51.26454 | 0 | 0 |
ENSMUSG00000119584.1 Rn18s-rs5 | 1624546.6620 | 8.192274 | 0.1498508 | 54.66955 | 0 | 0 |
ENSMUSG00000006205.14 Htra1 | 2118.8069 | 4.111353 | 0.1106220 | 37.16579 | 0 | 0 |
ENSMUSG00000002266.18 Zim1 | 4852.0107 | -3.413030 | 0.0930200 | -36.69137 | 0 | 0 |
ENSMUSG00000006519.12 Cyba | 1888.1110 | -3.138444 | 0.0904406 | -34.70173 | 0 | 0 |
ENSMUSG00000023904.11 Hcfc1r1 | 3021.9117 | -2.955816 | 0.0856391 | -34.51480 | 0 | 0 |
ENSMUSG00000031980.11 Agt | 922.7918 | -4.844777 | 0.1423726 | -34.02887 | 0 | 0 |
d1up <- rownames(subset(dge,padj <= 0.05 & log2FoldChange > 0))
d1dn <- rownames(subset(dge,padj <= 0.05 & log2FoldChange < 0))
txinfo$GeneID <- sapply(strsplit(txinfo$GeneID,"\\."),"[[",1)
g <- sapply(strsplit(rownames(dge),"\\."),"[[",1)
dge$biotype <- sapply(g, function(x) {
paste(unique(txinfo[txinfo$GeneID==x,"biotype"]),collapse=",") }
)
write.table(dge,file="mRNA_DE_ctrl_vs_rageko.tsv",quote=FALSE,sep="\t")
maplot(dge,"Cont1: Effect of RAGE KO")
make_volcano(dge,"Cont1: Effect of RAGE KO")
#agerdat <- assay(vsd)[grep("Ager",rownames(assay(vsd))),]
#par(mar=c(5,8,3,1))
#barplot(agerdat,horiz=TRUE,las=1,xlab="Normalised Ager expression",xlim=c(0,10))
Make a heatmap of the top 30 genes.
rpm1 <- apply(xx1, 2, function(x){x/sum(x,na.rm=T)}) * 1000000
agerdat <- rpm1[grep("Ager",rownames(rpm1)),]
par(mar=c(5,8,3,1))
barplot(agerdat,horiz=TRUE,las=1,xlab="Normalised Ager expression",xlim=c(0,16))
colfunc <- colorRampPalette(c("blue", "white", "red"))
rpm2 <- rpm1[which(rownames(rpm1) %in% rownames(head(dge,30))),]
heatmap.2(as.matrix(rpm2),margin=c(8, 22),cexRow=0.85,trace="none",
cexCol=0.9,col=colfunc(20),scale="row")
rownames(rpm2) <- sapply(strsplit(rownames(rpm2)," "),"[[",2)
heatmap.2(as.matrix(rpm2),margin=c(8, 22),cexRow=0.85,trace="none",
cexCol=0.9,col=colfunc(20),scale="row")
First need ortholog table.
Downloaded separately from the ensembl biomart website because the R package code is timing out.
orth <- read.table("../../ref/mart_export.txt",sep="\t",header=TRUE)
orth <- orth[which(orth$Human.gene.name != ""),]
orth <- orth[,c("Gene.stable.ID","Human.gene.name")]
orth <- unique(orth)
rownames(dge) <- sapply(strsplit(rownames(dge),"\\."),"[[",1)
Run mitch.
See the other report called “mrna_analysis_mitch.html” for the detailed analysis.
#download.file("https://reactome.org/download/current/ReactomePathways.gmt.zip", destfile="ReactomePathways.gmt.zip")
#unzip("ReactomePathways.gmt.zip")
# downloaded 19th August 2022
genesets <- gmt_import("ReactomePathways.gmt")
y <- mitch_import(dge, DEtype="deseq2",geneTable=orth)
## The input is a single dataframe; one contrast only. Converting
## it to a list for you.
## Note: Mean no. genes in input = 16920
## Note: no. genes in output = 12290
## Note: estimated proportion of input genes in output = 0.726
head(y)
## x
## A4GALT 0.5563104
## AAAS -9.3505565
## AACS 17.4368054
## AAGAB 0.6211840
## AAK1 10.8699941
## AAMDC -5.4631631
res <- mitch_calc(y, genesets, priority="effect",cores=16)
## Note: Enrichments with large effect sizes may not be
## statistically significant.
if (! file.exists("mrna_analysis_mitch.html")) {
mitch_report(res, "mrna_analysis_mitch.html")
}
head(res$enrichment_result,20) %>%
kbl(row.names=FALSE,caption = "Top pathways") %>%
kable_paper("hover", full_width = F)
set | setSize | pANOVA | s.dist | p.adjustANOVA |
---|---|---|---|---|
tRNA processing in the mitochondrion | 18 | 0.0000003 | -0.7014613 | 0.0000088 |
Cholesterol biosynthesis | 26 | 0.0000000 | 0.6917369 | 0.0000000 |
rRNA processing in the mitochondrion | 21 | 0.0000009 | -0.6199170 | 0.0000254 |
MET activates PTK2 signaling | 12 | 0.0006111 | 0.5713064 | 0.0081165 |
ALK mutants bind TKIs | 10 | 0.0021024 | 0.5616612 | 0.0206912 |
Laminin interactions | 18 | 0.0000371 | 0.5616037 | 0.0007146 |
Apoptosis induced DNA fragmentation | 10 | 0.0050416 | 0.5121824 | 0.0355514 |
Membrane binding and targetting of GAG proteins | 14 | 0.0012044 | -0.4998371 | 0.0142897 |
Synthesis And Processing Of GAG, GAGPOL Polyproteins | 14 | 0.0012044 | -0.4998371 | 0.0142897 |
Formation of a pool of free 40S subunits | 79 | 0.0000000 | -0.4903578 | 0.0000000 |
Peptide chain elongation | 67 | 0.0000000 | -0.4901281 | 0.0000000 |
Syndecan interactions | 19 | 0.0002684 | 0.4829573 | 0.0039479 |
Eukaryotic Translation Termination | 71 | 0.0000000 | -0.4766048 | 0.0000000 |
Formation of the ternary complex, and subsequently, the 43S complex | 47 | 0.0000000 | -0.4742580 | 0.0000008 |
Viral mRNA Translation | 67 | 0.0000000 | -0.4739731 | 0.0000000 |
Telomere C-strand synthesis initiation | 13 | 0.0033769 | -0.4695773 | 0.0281679 |
Mitochondrial translation initiation | 88 | 0.0000000 | -0.4695169 | 0.0000000 |
Mitochondrial translation termination | 88 | 0.0000000 | -0.4647096 | 0.0000000 |
Regulation of cholesterol biosynthesis by SREBP (SREBF) | 54 | 0.0000000 | 0.4634064 | 0.0000002 |
Eukaryotic Translation Elongation | 70 | 0.0000000 | -0.4553718 | 0.0000000 |
write.table(res$enrichment_result,file="mitch_pathways.tsv",sep="\t")
We have a list of mir-214 targets.
mir214_targ <- readLines("miR214_targets.txt")
mir214_targ <- list(mir214_targ)
names(mir214_targ) <- "mir214_targ"
res2 <- mitch_calc(y, mir214_targ, priority="effect",cores=16)
## Note: Enrichments with large effect sizes may not be
## statistically significant.
res2$enrichment_result
## set setSize pANOVA s.dist p.adjustANOVA
## 1 mir214_targ 3522 5.682073e-34 0.1395454 5.682073e-34
if (! file.exists("mrna_analysis_mitch_mir214.html")) {
mitch_report(res2, "mrna_analysis_mitch_mir214.html")
}
par(mfrow=c(2,1))
MIN=min(res2$ranked_profile[,1])
MAX=max(res2$ranked_profile[,1])
beeswarm(res2$detailed_sets$mir214_targ,pch=19,
lty="blank",cex=0.45,horiz=TRUE,ylim=c(MIN,MAX),
main="miR-214 targets",
xlab="position in rank (Ctrl vs RAGE KO)"
)
abline(v=0,lwd=2,lty=2,col="red")
abline(v=MIN,lwd=2,lty=2,col="black")
abline(v=MAX,lwd=2,lty=2,col="black")
grid()
par(mfrow=c(1,1))
It appears that they are upregulated in this contrast.
Here we are going to try running a 1 sample t-test.
Extract the miR214 targets from the mitch rank.
For each Reactome, get the set that intersects with miR-214 targets.
Run 1-sample t-test to determine enrichment.
Collect and format results.
Present chart and enriched genes for the top 10 pathways
head(res2$ranked_profile)
## x
## A4GALT 517
## AAAS -5332
## AACS 6074
## AAGAB 563
## AAK1 5478
## AAMDC -4170
MIN=min(as.vector(res2$ranked_profile))
MAX=max(as.vector(res2$ranked_profile))
str(res2$detailed_sets)
## List of 1
## $ mir214_targ: Named num [1:3522] 517 6074 563 5478 193 ...
## ..- attr(*, "names")= chr [1:3522] "A4GALT" "AACS" "AAGAB" "AAK1" ...
head(res2$detailed_sets[[1]])
## A4GALT AACS AAGAB AAK1 AAR2 ABCA1
## 517 6074 563 5478 193 -5914
tail(res2$detailed_sets[[1]])
## ZSCAN29 ZSWIM4 ZSWIM7 ZWILCH ZYG11B ZZEF1
## -2262 -3416 -1100 2921 4749 5677
hist(res2$detailed_sets[[1]],xlab="gene rank")
hist(res2$detailed_sets[[1]],xlab="gene rank",breaks=100)
y <- res2$detailed_sets[[1]]
names(genesets[lapply(genesets,length) >500])
## [1] "Adaptive Immune System"
## [2] "Axon guidance"
## [3] "Cell Cycle"
## [4] "Cell Cycle, Mitotic"
## [5] "Cellular responses to stimuli"
## [6] "Cellular responses to stress"
## [7] "Cytokine Signaling in Immune system"
## [8] "Developmental Biology"
## [9] "Disease"
## [10] "GPCR downstream signalling"
## [11] "Gene expression (Transcription)"
## [12] "Generic Transcription Pathway"
## [13] "Hemostasis"
## [14] "Immune System"
## [15] "Infectious disease"
## [16] "Innate Immune System"
## [17] "Membrane Trafficking"
## [18] "Metabolism"
## [19] "Metabolism of RNA"
## [20] "Metabolism of lipids"
## [21] "Metabolism of proteins"
## [22] "Nervous system development"
## [23] "Post-translational protein modification"
## [24] "RNA Polymerase II Transcription"
## [25] "Sensory Perception"
## [26] "Signal Transduction"
## [27] "Signaling by GPCR"
## [28] "Signaling by Receptor Tyrosine Kinases"
## [29] "Signaling by Rho GTPases"
## [30] "Signaling by Rho GTPases, Miro GTPases and RHOBTB3"
## [31] "Transport of small molecules"
## [32] "Vesicle-mediated transport"
# 1 sample t-test self contained test
# z = profile
# i = geneset index
# gsl = gene set library
# n = min number fo genes overlap=5
t1 <- function(y,i,gsl,n=5) {
gs <- gsl[[i]]
gsname <- names(gsl)[i]
z <- y[names(y) %in% gs]
len=length(z)
if (len >= n ) {
tres=t.test(z)
pval=tres$p.value
zmean=mean(z)
zmedian=median(z)
zcil=tres$conf.int[1]
zciu=tres$conf.int[2]
res = list(gsname=gsname,"p-value"=pval,"mean"=zmean,"median"=zmedian,
"lower conf interval"=zcil,"upper conf interval"=zciu,numgenes=len)
return(res)
}
}
# test it
t1(y,143,genesets)
## $gsname
## [1] "Anti-inflammatory response favouring Leishmania parasite infection"
##
## $`p-value`
## [1] 0.03424286
##
## $mean
## [1] 1783.4
##
## $median
## [1] 2551.5
##
## $`lower conf interval`
## [1] 147.134
##
## $`upper conf interval`
## [1] 3419.666
##
## $numgenes
## [1] 20
# run it for all
res <- lapply(1:length(genesets), function(i) {
unlist(t1(y,i,gsl=genesets,n=5))
})
# format the results
out <- t(do.call(cbind,res))
rownames(out) <- out[,1]
out <- out[,2:ncol(out)]
out <- as.matrix(out)
out2 <- apply(out,2,as.numeric)
rownames(out2) <- rownames(out)
out <- as.data.frame(out2)
out$padj <- p.adjust(out$`p-value`)
out <- out[order(out$`p-value`),]
Top significant results.
Take this table with a grain of salt because small p-values don’t always mean a biologically meaningful observation. For example, some of these are very large sets of genes with only a slight change.
head(out,20) %>% kbl(caption = "Top significant pathways") %>%
kable_paper("hover", full_width = F)
p-value | mean | median | lower conf interval | upper conf interval | numgenes | padj | |
---|---|---|---|---|---|---|---|
Signal Transduction | 0.00e+00 | 1433.0687 | 2107.50 | 1152.1919 | 1713.946 | 626 | 0.0000000 |
Post-translational protein modification | 0.00e+00 | 1296.2787 | 2077.50 | 930.8210 | 1661.736 | 366 | 0.0000000 |
Signaling by Rho GTPases, Miro GTPases and RHOBTB3 | 0.00e+00 | 1803.0343 | 2874.50 | 1302.5172 | 2303.551 | 204 | 0.0000000 |
Signaling by Rho GTPases | 0.00e+00 | 1733.6786 | 2747.50 | 1218.8964 | 2248.461 | 196 | 0.0000003 |
Metabolism of proteins | 0.00e+00 | 1103.4178 | 1832.25 | 765.6431 | 1441.193 | 438 | 0.0000004 |
Metabolism | 0.00e+00 | 1059.5813 | 1508.00 | 733.2895 | 1385.873 | 461 | 0.0000005 |
Disease | 0.00e+00 | 1014.0908 | 1247.00 | 664.2562 | 1363.925 | 402 | 0.0000261 |
Metabolism of lipids | 1.00e-07 | 1493.9365 | 2424.00 | 974.2207 | 2013.652 | 189 | 0.0000590 |
Hemostasis | 2.00e-07 | 1757.4930 | 3143.00 | 1124.8551 | 2390.131 | 142 | 0.0002001 |
Post-translational protein phosphorylation | 4.00e-07 | 3913.3636 | 5003.00 | 2783.6013 | 5043.126 | 22 | 0.0004710 |
Regulation of Insulin-like Growth Factor (IGF) transport and uptake by Insulin-like Growth Factor Binding Proteins (IGFBPs) | 5.00e-07 | 3674.9583 | 4788.50 | 2579.0320 | 4770.885 | 24 | 0.0005018 |
RHO GTPase cycle | 1.70e-06 | 1604.6765 | 2452.50 | 970.0825 | 2239.270 | 136 | 0.0019318 |
Immune System | 2.20e-06 | 864.8614 | 1071.00 | 510.3120 | 1219.411 | 433 | 0.0024914 |
RHOA GTPase cycle | 4.00e-06 | 2573.1304 | 3667.50 | 1585.4504 | 3560.810 | 46 | 0.0044526 |
Vesicle-mediated transport | 5.60e-06 | 1208.1244 | 1654.00 | 697.6935 | 1718.555 | 197 | 0.0062333 |
G alpha (12/13) signalling events | 9.70e-06 | 3464.9583 | 4885.00 | 2193.5628 | 4736.354 | 24 | 0.0107508 |
Metabolism of steroids | 1.00e-05 | 2731.8056 | 3634.50 | 1656.0884 | 3807.523 | 36 | 0.0110658 |
Membrane Trafficking | 1.18e-05 | 1169.9098 | 1585.50 | 657.0870 | 1682.733 | 194 | 0.0129622 |
Diseases of signal transduction by growth factor receptors and second messengers | 1.20e-05 | 1457.4407 | 2572.00 | 823.4708 | 2091.411 | 135 | 0.0132787 |
Synthesis of PIPs at the early endosome membrane | 1.21e-05 | 3996.7500 | 4118.50 | 3130.0703 | 4863.430 | 8 | 0.0132787 |
Biggest effect size (upregulated) with FDR<0.05, ranked by median.
sigup <- subset(out,padj<0.05 & median>0)
nrow(sigup)
## [1] 24
upreg <- head(sigup[order(-sigup$median),],20)
upreg %>% kbl(caption = "Top upregulated pathways") %>%
kable_paper("hover", full_width = F)
p-value | mean | median | lower conf interval | upper conf interval | numgenes | padj | |
---|---|---|---|---|---|---|---|
Post-translational protein phosphorylation | 4.00e-07 | 3913.364 | 5003.00 | 2783.6013 | 5043.126 | 22 | 0.0004710 |
G alpha (12/13) signalling events | 9.70e-06 | 3464.958 | 4885.00 | 2193.5628 | 4736.354 | 24 | 0.0107508 |
Regulation of Insulin-like Growth Factor (IGF) transport and uptake by Insulin-like Growth Factor Binding Proteins (IGFBPs) | 5.00e-07 | 3674.958 | 4788.50 | 2579.0320 | 4770.885 | 24 | 0.0005018 |
Synthesis of PIPs at the early endosome membrane | 1.21e-05 | 3996.750 | 4118.50 | 3130.0703 | 4863.430 | 8 | 0.0132787 |
RHOA GTPase cycle | 4.00e-06 | 2573.130 | 3667.50 | 1585.4504 | 3560.810 | 46 | 0.0044526 |
Metabolism of steroids | 1.00e-05 | 2731.806 | 3634.50 | 1656.0884 | 3807.523 | 36 | 0.0110658 |
Resolution of Sister Chromatid Cohesion | 3.41e-05 | 2701.781 | 3606.00 | 1562.9539 | 3840.609 | 32 | 0.0374372 |
RHO GTPases Activate Formins | 1.45e-05 | 2557.053 | 3603.00 | 1519.0110 | 3595.094 | 38 | 0.0159440 |
Sphingolipid metabolism | 4.51e-05 | 2692.231 | 3427.50 | 1566.6416 | 3817.820 | 26 | 0.0495066 |
Hemostasis | 2.00e-07 | 1757.493 | 3143.00 | 1124.8551 | 2390.131 | 142 | 0.0002001 |
Signaling by Rho GTPases, Miro GTPases and RHOBTB3 | 0.00e+00 | 1803.034 | 2874.50 | 1302.5172 | 2303.551 | 204 | 0.0000000 |
Signaling by Rho GTPases | 0.00e+00 | 1733.679 | 2747.50 | 1218.8964 | 2248.461 | 196 | 0.0000003 |
Diseases of signal transduction by growth factor receptors and second messengers | 1.20e-05 | 1457.441 | 2572.00 | 823.4708 | 2091.411 | 135 | 0.0132787 |
RHO GTPase cycle | 1.70e-06 | 1604.676 | 2452.50 | 970.0825 | 2239.270 | 136 | 0.0019318 |
Metabolism of lipids | 1.00e-07 | 1493.937 | 2424.00 | 974.2207 | 2013.652 | 189 | 0.0000590 |
RHO GTPase Effectors | 1.78e-05 | 1766.561 | 2366.50 | 996.0825 | 2537.039 | 82 | 0.0195666 |
Signal Transduction | 0.00e+00 | 1433.069 | 2107.50 | 1152.1919 | 1713.946 | 626 | 0.0000000 |
Post-translational protein modification | 0.00e+00 | 1296.279 | 2077.50 | 930.8210 | 1661.736 | 366 | 0.0000000 |
Metabolism of proteins | 0.00e+00 | 1103.418 | 1832.25 | 765.6431 | 1441.193 | 438 | 0.0000004 |
Vesicle-mediated transport | 5.60e-06 | 1208.124 | 1654.00 | 697.6935 | 1718.555 | 197 | 0.0062333 |
Biggest effect size (downregulated) with FDR<0.05, ranked by median.
sigdn <- subset(out,padj<0.05 & median<0)
nrow(sigdn)
## [1] 0
dnreg <- head(sigdn[order(sigdn$median),],20)
dnreg %>% kbl(caption = "Top downregulated pathways") %>%
kable_paper("hover", full_width = F)
p-value | mean | median | lower conf interval | upper conf interval | numgenes | padj |
---|---|---|---|---|---|---|
There were no downregulated sets that met the FDR threshold.
Take a look at a few top sets.
First with some histograms.
gsnames <- head(rownames(upreg),10)
for (gsname in gsnames ) {
gs <- genesets[[gsname]]
z <- y[names(y) %in% gs]
hist(z,xlim=c(MIN,MAX),breaks=10,xlab="generank",main=gsname)
}
for (gsname in gsnames ) {
gs <- genesets[[gsname]]
print(gsname)
z <- y[names(y) %in% gs]
z <- z[order(-z)]
print(z)
}
## [1] "Post-translational protein phosphorylation"
## FBN1 CALU PCSK9 FN1 TGOLN2 PDIA6 FSTL1 CSF1
## 6271 6120 6119 6049 6017 5731 5713 5613
## QSOX1 DNAJC3 WFS1 SDC2 FUCA2 TMEM132A MXRA8 CHRDL1
## 5503 5352 5171 4835 4742 4284 4131 3146
## APLP2 VWA1 MFGE8 MGAT4A TF PRSS23
## 1521 1467 1252 340 -979 -2304
## [1] "G alpha (12/13) signalling events"
## ROCK2 KALRN GNA13 ARHGEF12 VAV2 ARHGEF5 FGD3 ABR
## 5996 5986 5970 5954 5880 5839 5760 5754
## ADRA1D MCF2L ARHGEF2 AKAP13 ARHGEF10 GNB1 RHOB ARHGEF7
## 5728 5417 5168 5086 4684 4295 3934 3067
## ARHGEF10L SOS2 ITSN1 ARHGEF39 ROCK1 PLXNB1 ARHGEF9 RHOC
## 3058 2421 1497 55 -1060 -1199 -2997 -3134
## [1] "Regulation of Insulin-like Growth Factor (IGF) transport and uptake by Insulin-like Growth Factor Binding Proteins (IGFBPs)"
## FBN1 CALU PCSK9 FN1 TGOLN2 PDIA6 FSTL1 CSF1
## 6271 6120 6119 6049 6017 5731 5713 5613
## QSOX1 DNAJC3 WFS1 SDC2 FUCA2 TMEM132A MXRA8 CHRDL1
## 5503 5352 5171 4835 4742 4284 4131 3146
## PAPPA APLP2 VWA1 MFGE8 MGAT4A IGF1 TF PRSS23
## 2389 1521 1467 1252 340 -284 -979 -2304
## [1] "Synthesis of PIPs at the early endosome membrane"
## MTMR4 PI4K2B MTMR10 INPP4A PI4K2A MTM1 MTMR2 MTMR12
## 5488 4772 4681 4671 3566 3236 2938 2622
## [1] "RHOA GTPase cycle"
## IQGAP1 ROCK2 KALRN ARHGEF12 VAV2 ARHGAP5 ARHGEF5 ABR
## 6055 5996 5986 5954 5880 5845 5839 5754
## LMAN1 PLD1 ARHGAP28 MCF2L CIT STARD13 ARHGEF2 AKAP13
## 5739 5542 5446 5417 5301 5197 5168 5086
## ARHGEF10 TEX2 TMPO VAPB PLEKHG3 ARHGAP31 PGRMC2 STK10
## 4684 4424 4156 4053 3926 3748 3699 3636
## ARHGEF7 ARHGEF10L YKT6 ARHGAP32 FAF2 FMNL3 PKN3 ARHGAP22
## 3067 3058 2828 2388 2168 2020 1933 1279
## ARHGAP42 STOM DIAPH1 ARHGAP26 MYO9A DDRGK1 ROCK1 BCR
## 983 947 835 699 553 348 -1060 -2044
## ARHGAP1 FAM13A OPHN1 VANGL1 ARHGAP24 FLOT2
## -2449 -3281 -3289 -4215 -5273 -5662
## [1] "Metabolism of steroids"
## DHCR24 STARD4 HMGCS1 SEC24D MVD ACACA ELOVL6 FASN
## 6229.0 6220.0 6164.0 6108.0 5889.0 5851.0 5643.0 5556.0
## OSBP LDLRAP1 TSPO MED1 VDR GPAM TBL1XR1 SP1
## 5461.0 5310.0 5183.0 5181.0 5110.0 4848.0 4666.0 4531.0
## STARD5 STARD3NL HSD17B12 CREBBP SEC24C PTGIS NFYB HSD3B7
## 4307.0 3961.0 3308.0 3254.0 3087.0 2713.0 2490.0 2000.0
## CYP27B1 TBL1X NFYA OSBPL3 EBP PIAS4 ACACB LRP2
## 1626.0 449.5 -10.0 -72.0 -347.0 -1018.0 -1102.0 -1900.0
## HSD3B2 STARD3 UBE2I CHD9
## -1960.5 -2241.0 -3525.0 -4625.0
## [1] "Resolution of Sister Chromatid Cohesion"
## TAOK1 CENPF DYNC1LI2 PAFAH1B1 AHCTF1 DYNLL2 SEH1L RCC2
## 6166 6057 5894 5817 5618 5597 5112 4992
## RANGAP1 CKAP5 PPP2R5E PDS5A CLASP1 CENPA NUF2 KIF2C
## 4802 4709 4545 4367 4225 3936 3867 3666
## STAG2 AURKB NSL1 ZWILCH RAD21 PPP2R5C CENPO MAPRE1
## 3546 3524 2968 2921 2592 2032 1584 1580
## CLASP2 NUP37 CENPP CENPM PPP2CB BUB3 PPP2R5D ITGB3BP
## 1439 714 465 426 -2132 -3622 -5174 -5776
## [1] "RHO GTPases Activate Formins"
## ITGB1 TAOK1 CENPF DYNC1LI2 PAFAH1B1 AHCTF1 DYNLL2 SEH1L
## 6188 6166 6057 5894 5817 5618 5597 5112
## RCC2 RANGAP1 CKAP5 PPP2R5E CLASP1 DIAPH2 CENPA RHOB
## 4992 4802 4709 4545 4225 4086 3936 3934
## DVL1 NUF2 KIF2C SRF AURKB NSL1 ZWILCH PPP2R5C
## 3917 3867 3666 3540 3524 2968 2921 2032
## FMNL3 CENPO MAPRE1 CLASP2 DIAPH1 NUP37 CENPP CENPM
## 2020 1584 1580 1439 835 714 465 426
## SRGAP2 PPP2CB RHOC BUB3 PPP2R5D ITGB3BP
## -170 -2132 -3134 -3622 -5174 -5776
## [1] "Sphingolipid metabolism"
## UGCG ESYT2 SGMS2 SPNS2 OSBP SAMD8 SPTLC2 PSAP KDSR ORMDL3
## 5926 5737 5626 5463 5461 5049 4923 4808 4755 4480
## ALDH3A2 VAPB CERS6 HEXA GBA ARSG ASAH2 NEU3 CERS5 SPTSSA
## 4439 4053 3762 3093 2970 2014 2004 1942 1492 595
## GLB1 SGPP2 ACER2 SPHK1 PPM1L ACER3
## 153 -141 -746 -1179 -2940 -3741
## [1] "Hemostasis"
## ITGAV THBD ITGB1 DOCK5 ATP2B4 RAPGEF3 SDC1 KIF1B
## 6242 6194 6188 6184 6181 6173 6165 6151
## CRK CALU FN1 KIF21B PDPK1 KLC1 KIF26B GNA13
## 6130 6120 6049 6031 6027 5992 5990 5970
## ITPR3 PTPN11 GATA2 LRP8 SLC7A5 VAV2 GNAI3 SLC16A3
## 5960 5950 5938 5911 5899 5880 5690 5609
## L1CAM PIK3CB QSOX1 PRKAR2B ATP2A2 MAFF CBX5 ANGPT4
## 5601 5551 5503 5316 5300 5266 5169 5113
## CD109 MFN2 KIF13B AKAP10 PRKAR1A SDC2 NHLRC2 MAFG
## 5092 5022 4976 4940 4931 4835 4829 4812
## PSAP RCOR1 ALDOA ITGA2 CD99L2 PDE10A PROS1 PPP2R5E
## 4808 4795 4679 4663 4655 4609 4550 4545
## GNB1 ADRA2A DOCK9 MFN1 ITGA3 PRKG1 RHOB DGKH
## 4295 4279 4190 4159 4068 4013 3934 3856
## DAGLA MGLL TLN1 VTI1B KIF2C KRAS VCL DGKD
## 3796 3777 3738 3683 3666 3661 3559 3486
## DOCK8 SPN CEACAM1 ABCC4 ORAI2 SLC16A1 KIF5C CD44
## 3460 3433 3406 3314 3312 3301 3170 3116
## PRKAR2A YWHAZ CABLES1 PIK3R5 CD47 CHID1 KLC2 ANXA5
## 2848 2668 2514 2334 2257 2244 2242 2155
## KIF1A PPP2R5C PLCG2 EHD1 STXBP3 APLP2 LGALS3BP NRAS
## 2081 2032 1993 1897 1654 1521 1502 1310
## PRKCQ PICK1 EHD2 ITPK1 KIF5A CDK2 GNA11 PLEK
## 1171 984 834 682 415 381 317 302
## MAPK1 PIK3R3 IRF1 ENDOD1 IGF1 PRKACB CD63 ANGPT2
## 206 -118 -140 -189 -284 -446 -471 -474
## VPS45 TF GUCY1A2 PLCG1 CALM1 PRKCE PPP2CB PTPN1
## -554 -979 -1063 -1236 -1598 -1925 -2132 -2246
## PHF21A CD84 SH2B3 ATP1B3 KCNMB4 CABLES2 GRB2 HMG20B
## -2301 -2482 -2489 -2627 -2701 -2748 -2780 -3024
## IRF2 OLA1 MAPK14 PRKCA LYN KIF3A DGKZ PRKCD
## -3239 -3253 -3588 -3602 -4293 -4342 -4394 -4414
## CSK P2RX6 EHD3 PPP2R5D GNAI2 FGB GATA6 PPIL2
## -4454 -4634 -4657 -5174 -5289 -5400 -5423 -5455
## ORAI1 SERPINA3 F11R SLC8A1 RHOG PPBP
## -5757 -5825 -5883 -5916 -5918 -5919
sigdn <- subset(out,`p-value`<0.05 & median<0)
nrow(sigdn)
## [1] 20
dnreg <- head(sigdn[order(sigdn$median),],20)
dnreg %>% kbl(caption = "Top downregulated pathways") %>%
kable_paper("hover", full_width = F)
p-value | mean | median | lower conf interval | upper conf interval | numgenes | padj | |
---|---|---|---|---|---|---|---|
Cell recruitment (pro-inflammatory response) | 0.0475782 | -3637.200 | -4879.0 | -7211.685 | -62.7146628 | 5 | 1.0000000 |
Purinergic signaling in leishmaniasis infection | 0.0475782 | -3637.200 | -4879.0 | -7211.685 | -62.7146628 | 5 | 1.0000000 |
The NLRP3 inflammasome | 0.0486885 | -3564.200 | -4514.0 | -7095.294 | -33.1059815 | 5 | 1.0000000 |
Inflammasomes | 0.0499510 | -2652.429 | -4360.0 | -5304.074 | -0.7828632 | 7 | 1.0000000 |
Inhibition of DNA recombination at telomere | 0.0008892 | -4224.200 | -4355.0 | -5545.238 | -2903.1624589 | 5 | 0.9479087 |
PI3K events in ERBB2 signaling | 0.0011070 | -4048.400 | -4229.0 | -5388.989 | -2707.8106236 | 5 | 1.0000000 |
ERBB2 Regulates Cell Motility | 0.0392551 | -3325.400 | -4229.0 | -6385.030 | -265.7703937 | 5 | 1.0000000 |
SHC1 events in ERBB2 signaling | 0.0216016 | -2521.200 | -3396.5 | -4576.991 | -465.4088498 | 10 | 1.0000000 |
Mitochondrial translation termination | 0.0043009 | -2467.000 | -3171.5 | -4032.209 | -901.7905216 | 16 | 1.0000000 |
Mitochondrial translation initiation | 0.0094833 | -2281.467 | -3084.0 | -3910.590 | -652.3431029 | 15 | 1.0000000 |
Mitochondrial translation | 0.0184976 | -1953.222 | -2823.0 | -3535.311 | -371.1331601 | 18 | 1.0000000 |
Formation of the Early Elongation Complex | 0.0323851 | -2417.143 | -2817.0 | -4551.681 | -282.6043178 | 7 | 1.0000000 |
Formation of the HIV-1 Early Elongation Complex | 0.0323851 | -2417.143 | -2817.0 | -4551.681 | -282.6043178 | 7 | 1.0000000 |
RNA Pol II CTD phosphorylation and interaction with CE | 0.0399199 | -2261.429 | -2623.0 | -4378.518 | -144.3388890 | 7 | 1.0000000 |
RNA Pol II CTD phosphorylation and interaction with CE during HIV infection | 0.0399199 | -2261.429 | -2623.0 | -4378.518 | -144.3388890 | 7 | 1.0000000 |
mRNA Capping | 0.0399199 | -2261.429 | -2623.0 | -4378.518 | -144.3388890 | 7 | 1.0000000 |
Mitochondrial translation elongation | 0.0359553 | -1759.294 | -2562.0 | -3388.018 | -130.5702501 | 17 | 1.0000000 |
RUNX1 interacts with co-factors whose precise effect on RUNX1 targets is not known | 0.0198441 | -2064.200 | -2381.0 | -3748.527 | -379.8726291 | 15 | 1.0000000 |
Respiratory electron transport, ATP synthesis by chemiosmotic coupling, and heat production by uncoupling proteins. | 0.0152683 | -1777.150 | -2362.0 | -3172.374 | -381.9258719 | 20 | 1.0000000 |
Respiratory electron transport | 0.0436868 | -1604.824 | -2018.0 | -3158.298 | -51.3486411 | 17 | 1.0000000 |
Now some charts for those pathways.
gsnames <- head(rownames(dnreg),20)
for (gsname in gsnames ) {
gs <- genesets[[gsname]]
z <- y[names(y) %in% gs]
hist(z,xlim=c(MIN,MAX),breaks=10,xlab="generank",main=gsname)
}
for (gsname in gsnames ) {
gs <- genesets[[gsname]]
print(gsname)
z <- y[names(y) %in% gs]
z <- z[order(z)]
print(z)
}
## [1] "Cell recruitment (pro-inflammatory response)"
## TXNIP SUGT1 ENTPD5 RELA NFKB1
## -5282 -5139 -4879 -4360 1474
## [1] "Purinergic signaling in leishmaniasis infection"
## TXNIP SUGT1 ENTPD5 RELA NFKB1
## -5282 -5139 -4879 -4360 1474
## [1] "The NLRP3 inflammasome"
## TXNIP SUGT1 PANX1 RELA NFKB1
## -5282 -5139 -4514 -4360 1474
## [1] "Inflammasomes"
## TXNIP SUGT1 PANX1 RELA BCL2L1 BCL2 NFKB1
## -5282 -5139 -4514 -4360 -1474 728 1474
## [1] "Inhibition of DNA recombination at telomere"
## TERF2 POLR2L POLR2D TERF2IP POLR2F
## -5472 -4936 -4355 -3541 -2817
## [1] "PI3K events in ERBB2 signaling"
## EGFR ERBB2 HBEGF NRG2 GRB2
## -5465 -4577 -4229 -3191 -2780
## [1] "ERBB2 Regulates Cell Motility"
## EGFR ERBB2 HBEGF NRG2 DIAPH1
## -5465 -4577 -4229 -3191 835
## [1] "SHC1 events in ERBB2 signaling"
## EGFR ERBB2 PRKCD HBEGF PRKCA NRG2 GRB2 PRKCE NRAS KRAS
## -5465 -4577 -4414 -4229 -3602 -3191 -2780 -1925 1310 3661
## [1] "Mitochondrial translation termination"
## GADD45GIP1 MRPS18A MRRF MRPS25 MRPL30 MRPS35 MRPL28
## -5912 -5617 -5250 -4909 -3989 -3962 -3705
## MRPS30 MRPL46 MRPS10 MRPL17 MRPL51 MRPS23 MRPL3
## -3259 -3084 -2562 -2140 -837 -190 -97
## MRPL19 MRPS6
## 468 5573
## [1] "Mitochondrial translation initiation"
## GADD45GIP1 MRPS18A MRPS25 MRPL30 MRPS35 MRPL28 MRPS30
## -5912 -5617 -4909 -3989 -3962 -3705 -3259
## MRPL46 MRPS10 MRPL17 MRPL51 MRPS23 MRPL3 MRPL19
## -3084 -2562 -2140 -837 -190 -97 468
## MRPS6
## 5573
## [1] "Mitochondrial translation"
## GADD45GIP1 MRPS18A MRRF MRPS25 MRPL30 MRPS35 MRPL28
## -5912 -5617 -5250 -4909 -3989 -3962 -3705
## MRPS30 MRPL46 MRPS10 MRPL17 MRPL51 MRPS23 MRPL3
## -3259 -3084 -2562 -2140 -837 -190 -97
## MRPL19 GFM1 TSFM MRPS6
## 468 635 3679 5573
## [1] "Formation of the Early Elongation Complex"
## POLR2L POLR2D SUPT4H1 POLR2F GTF2H5 ERCC2 CDK7
## -4936 -4355 -3123 -2817 -2623 -1037 1971
## [1] "Formation of the HIV-1 Early Elongation Complex"
## POLR2L POLR2D SUPT4H1 POLR2F GTF2H5 ERCC2 CDK7
## -4936 -4355 -3123 -2817 -2623 -1037 1971
## [1] "RNA Pol II CTD phosphorylation and interaction with CE"
## POLR2L POLR2D POLR2F GTF2H5 RNGTT ERCC2 CDK7
## -4936 -4355 -2817 -2623 -2033 -1037 1971
## [1] "RNA Pol II CTD phosphorylation and interaction with CE during HIV infection"
## POLR2L POLR2D POLR2F GTF2H5 RNGTT ERCC2 CDK7
## -4936 -4355 -2817 -2623 -2033 -1037 1971
## [1] "mRNA Capping"
## POLR2L POLR2D POLR2F GTF2H5 RNGTT ERCC2 CDK7
## -4936 -4355 -2817 -2623 -2033 -1037 1971
## [1] "Mitochondrial translation elongation"
## GADD45GIP1 MRPS18A MRPS25 MRPL30 MRPS35 MRPL28 MRPS30
## -5912 -5617 -4909 -3989 -3962 -3705 -3259
## MRPL46 MRPS10 MRPL17 MRPL51 MRPS23 MRPL3 MRPL19
## -3084 -2562 -2140 -837 -190 -97 468
## GFM1 TSFM MRPS6
## 635 3679 5573
## [1] "RUNX1 interacts with co-factors whose precise effect on RUNX1 targets is not known"
## PHC2 SMARCD1 CBX2 SCMH1 SMARCE1 CBX6 RING1 RYBP SMARCC2 YAF2
## -5557 -4804 -4330 -4189 -3517 -3448 -3019 -2381 -2315 -2312
## ARID1A RNF2 CBX4 SMARCC1 PHC3
## -2021 -1904 -557 3887 5504
## [1] "Respiratory electron transport, ATP synthesis by chemiosmotic coupling, and heat production by uncoupling proteins."
## MT-ATP6 NDUFB5 NDUFB9 NDUFA10 NDUFA4 COX7C COX4I1 UQCRC1
## -5894 -5265 -4924 -4856 -4493 -4241 -3949 -3364
## NDUFA7 SLC25A27 SDHC NDUFAF3 NDUFAF6 NDUFA2 PM20D1 SCO1
## -2945 -2706 -2018 -1702 -888 -569 339 903
## ETFA COX14 NUBPL TACO1
## 2110 2479 2825 3615
## [1] "Respiratory electron transport"
## NDUFB5 NDUFB9 NDUFA10 NDUFA4 COX7C COX4I1 UQCRC1 NDUFA7 SDHC NDUFAF3
## -5265 -4924 -4856 -4493 -4241 -3949 -3364 -2945 -2018 -1702
## NDUFAF6 NDUFA2 SCO1 ETFA COX14 NUBPL TACO1
## -888 -569 903 2110 2479 2825 3615
sessionInfo()
## R version 4.3.1 (2023-06-16)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 22.04.3 LTS
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.10.0
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: Australia/Melbourne
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats4 stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] RColorBrewer_1.1-3 beeswarm_0.4.0
## [3] kableExtra_1.3.4 biomaRt_2.56.1
## [5] dplyr_1.1.2 mitch_1.12.0
## [7] gplots_3.1.3 DESeq2_1.40.2
## [9] SummarizedExperiment_1.30.2 Biobase_2.60.0
## [11] MatrixGenerics_1.12.3 matrixStats_1.0.0
## [13] GenomicRanges_1.52.0 GenomeInfoDb_1.36.1
## [15] IRanges_2.34.1 S4Vectors_0.38.1
## [17] BiocGenerics_0.46.0 reshape2_1.4.4
##
## loaded via a namespace (and not attached):
## [1] DBI_1.1.3 bitops_1.0-7 gridExtra_2.3
## [4] echarts4r_0.4.5 rlang_1.1.1 magrittr_2.0.3
## [7] compiler_4.3.1 RSQLite_2.3.1 png_0.1-8
## [10] systemfonts_1.0.4 vctrs_0.6.3 rvest_1.0.3
## [13] stringr_1.5.0 pkgconfig_2.0.3 crayon_1.5.2
## [16] fastmap_1.1.1 dbplyr_2.3.3 XVector_0.40.0
## [19] ellipsis_0.3.2 caTools_1.18.2 utf8_1.2.3
## [22] promises_1.2.0.1 rmarkdown_2.23 bit_4.0.5
## [25] xfun_0.39 zlibbioc_1.46.0 cachem_1.0.8
## [28] jsonlite_1.8.7 progress_1.2.2 blob_1.2.4
## [31] highr_0.10 later_1.3.1 DelayedArray_0.26.7
## [34] reshape_0.8.9 BiocParallel_1.34.2 prettyunits_1.1.1
## [37] parallel_4.3.1 R6_2.5.1 bslib_0.5.0
## [40] stringi_1.7.12 GGally_2.1.2 jquerylib_0.1.4
## [43] Rcpp_1.0.11 knitr_1.43 httpuv_1.6.11
## [46] Matrix_1.6-0 tidyselect_1.2.0 rstudioapi_0.15.0
## [49] abind_1.4-5 yaml_2.3.7 codetools_0.2-19
## [52] curl_5.0.1 lattice_0.21-8 tibble_3.2.1
## [55] plyr_1.8.8 KEGGREST_1.40.0 shiny_1.7.4.1
## [58] evaluate_0.21 BiocFileCache_2.8.0 xml2_1.3.5
## [61] Biostrings_2.68.1 filelock_1.0.2 pillar_1.9.0
## [64] KernSmooth_2.23-22 generics_0.1.3 RCurl_1.98-1.12
## [67] hms_1.1.3 ggplot2_3.4.2 munsell_0.5.0
## [70] scales_1.2.1 gtools_3.9.4 xtable_1.8-4
## [73] glue_1.6.2 tools_4.3.1 locfit_1.5-9.8
## [76] webshot_0.5.5 XML_3.99-0.14 grid_4.3.1
## [79] AnnotationDbi_1.62.2 colorspace_2.1-0 GenomeInfoDbData_1.2.10
## [82] cli_3.6.1 rappdirs_0.3.3 fansi_1.0.4
## [85] S4Arrays_1.0.5 viridisLite_0.4.2 svglite_2.1.1
## [88] gtable_0.3.3 sass_0.4.7 digest_0.6.33
## [91] htmlwidgets_1.6.2 memoise_2.0.1 htmltools_0.5.5
## [94] lifecycle_1.0.3 httr_1.4.6 mime_0.12
## [97] bit64_4.0.5 MASS_7.3-60