Here we are looking at putting together the easiest possible workflow for the package.
Source code: https://github.com/markziemann/schizophrenia
Load packages.
Important: ensure that the mitch version used is 1.15.1 or higher.
suppressPackageStartupMessages({
library("limma")
library("IlluminaHumanMethylationEPICanno.ilm10b4.hg19")
library("HGNChelper")
library("mitch")
library("kableExtra")
})
if( packageVersion("mitch") < "1.15.1") {
warning("This workflow requires mitch version 1.15.1 or higher")
}
Gene ontologies were downloaded in GMT format from MSigDB on 15th Jan 2024???,1. The GMT file is read into R using the mitch function gmt_import()
.
gene_sets <- gmt_import("c5.go.v2023.2.Hs.symbols.gmt")
One of the critical parts of this workflow is the establishment of probe-gene relationships. This controls how the probe data is aggregated to make the gene level scores.
As these annotations are several years old, many of the annotated gene names are no longer current. To remedy this, the gene names are screened with the HGNChelper package and any defunct symbols get updated to the newer gene name, so they will be recognised properly in the gene sets.
anno <- getAnnotation(IlluminaHumanMethylationEPICanno.ilm10b4.hg19)
myann <- data.frame(anno[,c("UCSC_RefGene_Name","UCSC_RefGene_Group","Islands_Name","Relation_to_Island")])
gp <- myann[,"UCSC_RefGene_Name",drop=FALSE]
gp2 <- strsplit(gp$UCSC_RefGene_Name,";")
names(gp2) <- rownames(gp)
gp2 <- lapply(gp2,unique)
gt1 <- stack(gp2)
colnames(gt1) <- c("gene","probe")
gt1$probe <- as.character(gt1$probe)
dim(gt1)
## [1] 684970 2
str(gt1)
## 'data.frame': 684970 obs. of 2 variables:
## $ gene : chr "YTHDF1" "EIF2S3" "PKN3" "CCDC57" ...
## $ probe: chr "cg18478105" "cg09835024" "cg14361672" "cg01763666" ...
length(unique(gt1$gene))
## [1] 27364
if (! file.exists("new.hgnc.table.rds")) {
new.hgnc.table <- getCurrentHumanMap()
saveRDS(new.hgnc.table, "new.hgnc.table.rds")
}
new.hgnc.table <- readRDS("new.hgnc.table.rds")
fix <- checkGeneSymbols(gt1$gene,map=new.hgnc.table)
## Warning in checkGeneSymbols(gt1$gene, map = new.hgnc.table): Human gene symbols
## should be all upper-case except for the 'orf' in open reading frames. The case
## of some letters was corrected.
## Warning in checkGeneSymbols(gt1$gene, map = new.hgnc.table): x contains
## non-approved gene symbols
fix2 <- fix[which(fix$x != fix$Suggested.Symbol),]
length(unique(fix2$x))
## [1] 3253
gt1$gene <- fix$Suggested.Symbol
head(gt1)
## gene probe
## 1 YTHDF1 cg18478105
## 2 EIF2S3 cg09835024
## 3 PKN3 cg14361672
## 4 CCDC57 cg01763666
## 5 INF2 cg12950382
## 6 CDC16 cg02115394
The first part is to import the data into mitch.
This only works properly when mitch’s mapGeneIds function uses mean
to aggregate (line 69 of mitch.R).
Data files:
EWAS_ageofonset_asrb_epic.txt.gz
EWAS_clozapine_asrb_epic.txt.gz
EWAS_cognitivestatus_asrb_epic.txt.gz
EWAS_gafscore_asrb_epic.txt.gz
EWAS_prs_asrb_epic.txt.gz
ageonset <- read.table("ASRB_EWAS/EWAS_ageofonset_asrb_epic.fmt.txt",sep="\t",header=TRUE)
colnames(ageonset) <- c("probe","ageonset")
rownames(ageonset) <- ageonset$probe ; ageonset$probe=NULL
iageonset <- -ageonset
cloz <- read.table("ASRB_EWAS/EWAS_clozapine_asrb_epic.fmt.txt",sep="\t",header=TRUE)
colnames(cloz) <- c("probe","cloz")
rownames(cloz) <- cloz$probe ; cloz$probe=NULL
cognit <- read.table("ASRB_EWAS/EWAS_cognitivestatus_asrb_epic.fmt.txt",sep="\t",header=TRUE)
colnames(cognit) <- c("probe","cognit")
rownames(cognit) <- cognit$probe ; cognit$probe=NULL
gaf <- read.table("ASRB_EWAS/EWAS_gafscore_asrb_epic.fmt.txt",sep="\t",header=TRUE)
colnames(gaf) <- c("probe","gaf")
rownames(gaf) <- gaf$probe ; gaf$probe=NULL
igaf <- -gaf
prs <- read.table("ASRB_EWAS/EWAS_prs_asrb_epic.fmt.txt",sep="\t",header=TRUE)
colnames(prs) <- c("probe","prs")
rownames(prs) <- prs$probe ; prs$probe=NULL
Import data.
mylist2 <- list("iageonset"=iageonset,"cloz"=cloz,"cognit"=cognit,"igaf"=igaf,"prs"=prs)
mm <- mitch_import(x=mylist2, DEtype="prescored",geneTable=gt1)
## Note: Mean no. genes in input = 743553
## Note: no. genes in output = 21942
## Warning in mitch_import(x = mylist2, DEtype = "prescored", geneTable = gt1): Warning: less than half of the input genes are also in the
## output
Multimitch
mmres <- mitch_calc(x=mm,genesets=gene_sets,minsetsize=5,cores=16,resrows=50,priority="effect")
## Note: Enrichments with large effect sizes may not be
## statistically significant.
if (! file.exists("multires.html")){
mitch_report(res=mmres,outfile="multires.html")
}
mmrestop <- mmres$enrichment_result
mmrestop <- mmrestop[order(mmrestop$pMANOVA),]
head(mmrestop,30) %>%
kbl(caption = "Top results in multi by p-value") %>%
kable_paper("hover", full_width = F)
set | setSize | pMANOVA | s.iageonset | s.cloz | s.cognit | s.igaf | s.prs | p.iageonset | p.cloz | p.cognit | p.igaf | p.prs | s.dist | SD | p.adjustMANOVA | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
9566 | GOMF_OLFACTORY_RECEPTOR_ACTIVITY | 337 | 0 | -0.1643826 | -0.3878818 | 0.1451251 | 0.6203288 | 0.0767419 | 0.0000002 | 0.0000000 | 0.0000047 | 0 | 0.0154644 | 0.7676148 | 0.3782924 | 0 |
6854 | GOBP_SENSORY_PERCEPTION_OF_SMELL | 363 | 0 | -0.1599746 | -0.3605992 | 0.1442609 | 0.5863283 | 0.0787174 | 0.0000002 | 0.0000000 | 0.0000023 | 0 | 0.0099909 | 0.7255426 | 0.3569799 | 0 |
1093 | GOBP_DETECTION_OF_STIMULUS_INVOLVED_IN_SENSORY_PERCEPTION | 451 | 0 | -0.1342604 | -0.3057683 | 0.1387098 | 0.5193368 | 0.0422986 | 0.0000010 | 0.0000000 | 0.0000004 | 0 | 0.1236194 | 0.6342400 | 0.3117320 | 0 |
6850 | GOBP_SENSORY_PERCEPTION_OF_CHEMICAL_STIMULUS | 438 | 0 | -0.1231133 | -0.3120787 | 0.1536195 | 0.5183220 | 0.0720320 | 0.0000099 | 0.0000000 | 0.0000000 | 0 | 0.0097391 | 0.6403087 | 0.3126204 | 0 |
1092 | GOBP_DETECTION_OF_STIMULUS | 571 | 0 | -0.1162970 | -0.2374419 | 0.1448074 | 0.4412943 | 0.0239577 | 0.0000020 | 0.0000000 | 0.0000000 | 0 | 0.3278078 | 0.5349649 | 0.2612697 | 0 |
9118 | GOMF_G_PROTEIN_COUPLED_RECEPTOR_ACTIVITY | 741 | 0 | -0.0938243 | -0.1894197 | 0.1484769 | 0.3484517 | 0.0596077 | 0.0000137 | 0.0000000 | 0.0000000 | 0 | 0.0057335 | 0.4378354 | 0.2102155 | 0 |
6848 | GOBP_SENSORY_PERCEPTION | 862 | 0 | -0.0773733 | -0.1685532 | 0.1150588 | 0.3055085 | 0.0191472 | 0.0001148 | 0.0000000 | 0.0000000 | 0 | 0.3399189 | 0.3759487 | 0.1829116 | 0 |
9435 | GOMF_MOLECULAR_TRANSDUCER_ACTIVITY | 1357 | 0 | -0.0936096 | -0.0734071 | 0.1366308 | 0.2519580 | 0.0195108 | 0.0000000 | 0.0000057 | 0.0000000 | 0 | 0.2279255 | 0.3109387 | 0.1458241 | 0 |
1764 | GOBP_G_PROTEIN_COUPLED_RECEPTOR_SIGNALING_PATHWAY | 1133 | 0 | -0.0947161 | -0.0996212 | 0.1399526 | 0.2541341 | 0.0479463 | 0.0000001 | 0.0000000 | 0.0000000 | 0 | 0.0064836 | 0.3246001 | 0.1525570 | 0 |
10106 | GOMF_TRANSCRIPTION_REGULATOR_ACTIVITY | 1821 | 0 | 0.0770863 | 0.0145107 | -0.0355493 | -0.2109717 | 0.0935796 | 0.0000000 | 0.3044197 | 0.0118639 | 0 | 0.0000000 | 0.2463388 | 0.1224032 | 0 |
9948 | GOMF_SEQUENCE_SPECIFIC_DNA_BINDING | 1562 | 0 | 0.0754558 | 0.0046962 | -0.0521996 | -0.2273770 | 0.1058921 | 0.0000006 | 0.7567078 | 0.0005731 | 0 | 0.0000000 | 0.2671214 | 0.1319130 | 0 |
7617 | GOCC_CATALYTIC_COMPLEX | 1609 | 0 | 0.0675418 | 0.0067616 | -0.1425679 | -0.2215897 | 0.0495104 | 0.0000062 | 0.6511278 | 0.0000000 | 0 | 0.0009279 | 0.2765619 | 0.1274102 | 0 |
7665 | GOCC_CHROMOSOME | 1811 | 0 | 0.0782278 | 0.0258625 | -0.0800031 | -0.2022736 | 0.0987343 | 0.0000000 | 0.0678656 | 0.0000000 | 0 | 0.0000000 | 0.2526896 | 0.1250895 | 0 |
8922 | GOMF_DNA_BINDING_TRANSCRIPTION_FACTOR_ACTIVITY | 1361 | 0 | 0.0767887 | 0.0012863 | -0.0258108 | -0.2261423 | 0.1159164 | 0.0000020 | 0.9365591 | 0.1102093 | 0 | 0.0000000 | 0.2667233 | 0.1327304 | 0 |
8122 | GOCC_NUCLEAR_PROTEIN_CONTAINING_COMPLEX | 1135 | 0 | 0.0836151 | -0.0022899 | -0.1641531 | -0.2265251 | 0.0631030 | 0.0000020 | 0.8964763 | 0.0000000 | 0 | 0.0003357 | 0.2987283 | 0.1388441 | 0 |
3451 | GOBP_NERVOUS_SYSTEM_PROCESS | 1381 | 0 | -0.0489777 | -0.0938900 | 0.1042962 | 0.1968257 | 0.0140583 | 0.0022745 | 0.0000000 | 0.0000000 | 0 | 0.3810854 | 0.2470422 | 0.1173579 | 0 |
8818 | GOMF_CIS_REGULATORY_REGION_SEQUENCE_SPECIFIC_DNA_BINDING | 1138 | 0 | 0.0794211 | 0.0165518 | -0.0333207 | -0.2192489 | 0.1082235 | 0.0000062 | 0.3463680 | 0.0579970 | 0 | 0.0000000 | 0.2597582 | 0.1294279 | 0 |
8259 | GOCC_PROTEIN_DNA_COMPLEX | 1325 | 0 | 0.0806791 | 0.0422068 | -0.0411003 | -0.1902320 | 0.1077949 | 0.0000008 | 0.0098947 | 0.0120099 | 0 | 0.0000000 | 0.2403908 | 0.1201953 | 0 |
4641 | GOBP_POSITIVE_REGULATION_OF_RNA_METABOLIC_PROCESS | 1805 | 0 | 0.0395091 | 0.0435197 | -0.0341398 | -0.1735436 | 0.0666594 | 0.0053481 | 0.0021544 | 0.0160970 | 0 | 0.0000026 | 0.1979427 | 0.0981181 | 0 |
6748 | GOBP_RIBONUCLEOPROTEIN_COMPLEX_BIOGENESIS | 449 | 0 | 0.0681096 | -0.0511778 | -0.2823454 | -0.3041848 | 0.0441756 | 0.0133592 | 0.0630340 | 0.0000000 | 0 | 0.1085838 | 0.4259776 | 0.1776535 | 0 |
8049 | GOCC_MITOCHONDRION | 1569 | 0 | 0.0192178 | 0.0181879 | -0.1225811 | -0.1797461 | 0.0365386 | 0.2039351 | 0.2292332 | 0.0000000 | 0 | 0.0157110 | 0.2221935 | 0.0986638 | 0 |
9564 | GOMF_ODORANT_BINDING | 100 | 0 | -0.0547084 | -0.3824311 | 0.1267649 | 0.6251891 | 0.0264188 | 0.3444697 | 0.0000000 | 0.0284794 | 0 | 0.6480171 | 0.7462407 | 0.3652353 | 0 |
7954 | GOCC_INTRACELLULAR_PROTEIN_CONTAINING_COMPLEX | 851 | 0 | 0.0634053 | 0.0333860 | -0.1396067 | -0.2326162 | 0.0531955 | 0.0016830 | 0.0981638 | 0.0000000 | 0 | 0.0084078 | 0.2855957 | 0.1338723 | 0 |
3196 | GOBP_NEGATIVE_REGULATION_OF_NUCLEOBASE_CONTAINING_COMPOUND_METABOLIC_PROCESS | 1430 | 0 | 0.0486472 | 0.0428747 | -0.0494451 | -0.1738332 | 0.0785230 | 0.0020639 | 0.0066228 | 0.0017396 | 0 | 0.0000007 | 0.2074451 | 0.1030372 | 0 |
6790 | GOBP_RNA_PROCESSING | 1248 | 0 | 0.0200382 | -0.0633376 | -0.1728327 | -0.1434562 | 0.0352884 | 0.2337812 | 0.0001672 | 0.0000000 | 0 | 0.0360013 | 0.2368740 | 0.0936419 | 0 |
7820 | GOCC_ENVELOPE | 1183 | 0 | 0.0200343 | 0.0204073 | -0.1269450 | -0.1914674 | 0.0281919 | 0.2457043 | 0.2370233 | 0.0000000 | 0 | 0.1023540 | 0.2332111 | 0.1023591 | 0 |
3310 | GOBP_NEGATIVE_REGULATION_OF_RNA_BIOSYNTHETIC_PROCESS | 1211 | 0 | 0.0658893 | 0.0511804 | -0.0449344 | -0.1748868 | 0.0877487 | 0.0001131 | 0.0027116 | 0.0084721 | 0 | 0.0000003 | 0.2174055 | 0.1086510 | 0 |
6770 | GOBP_RIBOSOME_BIOGENESIS | 303 | 0 | 0.0589775 | -0.0554461 | -0.3007690 | -0.3292038 | 0.0421914 | 0.0774307 | 0.0969034 | 0.0000000 | 0 | 0.2065198 | 0.4551591 | 0.1863466 | 0 |
732 | GOBP_CELL_CYCLE | 1732 | 0 | 0.0532042 | 0.0173066 | -0.0790776 | -0.1553399 | 0.0459968 | 0.0002323 | 0.2312198 | 0.0000000 | 0 | 0.0014614 | 0.1887582 | 0.0906216 | 0 |
4720 | GOBP_POSITIVE_REGULATION_OF_TRANSCRIPTION_BY_RNA_POLYMERASE_II | 1191 | 0 | 0.0331296 | 0.0517734 | -0.0231155 | -0.1774395 | 0.0763082 | 0.0541314 | 0.0026150 | 0.1790621 | 0 | 0.0000091 | 0.2040100 | 0.1016249 | 0 |
mmrestop <- subset(mmrestop,p.adjustMANOVA<0.05)
mmrestop <- mmrestop[order(-abs(mmrestop$s.dist)),]
head(mmrestop,30) %>%
kbl(caption = "Top results in multi by effect size") %>%
kable_paper("hover", full_width = F)
set | setSize | pMANOVA | s.iageonset | s.cloz | s.cognit | s.igaf | s.prs | p.iageonset | p.cloz | p.cognit | p.igaf | p.prs | s.dist | SD | p.adjustMANOVA | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1151 | GOBP_DISRUPTION_OF_PLASMA_MEMBRANE_INTEGRITY_IN_ANOTHER_ORGANISM | 6 | 0.0000008 | -0.9794858 | -0.6334792 | -0.0481856 | -0.7322210 | 0.1622599 | 0.0000324 | 0.0072027 | 0.8380450 | 0.0018945 | 0.4912759 | 1.3876188 | 0.4821603 | 0.0000368 |
8594 | GOMF_ALKANE_1_MONOOXYGENASE_ACTIVITY | 5 | 0.0039303 | -0.3329990 | 0.3559375 | 0.8767197 | 0.7099695 | -0.2642750 | 0.1972230 | 0.1681002 | 0.0006853 | 0.0059692 | 0.3061330 | 1.2570263 | 0.5518425 | 0.0450382 |
8782 | GOMF_CCR6_CHEMOKINE_RECEPTOR_BINDING | 5 | 0.0032941 | -0.3699959 | 0.4948443 | 0.7827050 | 0.7358253 | 0.0446096 | 0.1519217 | 0.0553299 | 0.0024358 | 0.0043772 | 0.8628537 | 1.2400903 | 0.4919256 | 0.0393329 |
866 | GOBP_CHORIONIC_TROPHOBLAST_CELL_PROLIFERATION | 5 | 0.0007438 | 0.5523909 | -0.4499157 | 0.3075626 | -0.1435474 | 0.8932580 | 0.0324238 | 0.0814598 | 0.2336534 | 0.5783040 | 0.0005413 | 1.1919187 | 0.5365787 | 0.0121005 |
2185 | GOBP_LOBAR_BRONCHUS_EPITHELIUM_DEVELOPMENT | 5 | 0.0028943 | 0.0191184 | 0.7279847 | 0.3647445 | 0.6327483 | -0.5603592 | 0.9409845 | 0.0048137 | 0.1578204 | 0.0142708 | 0.0300063 | 1.1737711 | 0.5237498 | 0.0357021 |
9743 | GOMF_PIRNA_BINDING | 5 | 0.0037048 | -0.7239003 | 0.2479920 | 0.8274149 | 0.2976068 | -0.0731641 | 0.0050563 | 0.3368968 | 0.0013535 | 0.2491376 | 0.7769354 | 1.1679340 | 0.5695889 | 0.0430323 |
9209 | GOMF_IMMUNOGLOBULIN_RECEPTOR_ACTIVITY | 6 | 0.0014187 | 0.1935783 | 0.8071207 | 0.7198061 | 0.2932166 | -0.0492949 | 0.4115720 | 0.0006168 | 0.0022610 | 0.2135755 | 0.8343700 | 1.1381754 | 0.3618179 | 0.0205050 |
4879 | GOBP_PROTECTION_FROM_NATURAL_KILLER_CELL_MEDIATED_CYTOTOXICITY | 6 | 0.0000027 | 0.1970581 | -0.8755774 | 0.5543703 | -0.3853331 | 0.0499027 | 0.4032160 | 0.0002035 | 0.0186885 | 0.1021407 | 0.8323578 | 1.1241735 | 0.5526127 | 0.0001039 |
5066 | GOBP_PROXIMAL_DISTAL_PATTERN_FORMATION_INVOLVED_IN_NEPHRON_DEVELOPMENT | 5 | 0.0033800 | -0.0219264 | 0.2042485 | 0.0876054 | -0.8415645 | 0.6820714 | 0.9323360 | 0.4289897 | 0.7344314 | 0.0011173 | 0.0082562 | 1.1060403 | 0.5524685 | 0.0401266 |
9659 | GOMF_PEPTIDOGLYCAN_IMMUNE_RECEPTOR_ACTIVITY | 5 | 0.0023858 | -0.5156129 | 0.3079272 | -0.0815700 | -0.4397411 | -0.7892875 | 0.0458567 | 0.2330995 | 0.7521047 | 0.0885915 | 0.0022379 | 1.0879690 | 0.4250409 | 0.0309423 |
2184 | GOBP_LOBAR_BRONCHUS_DEVELOPMENT | 6 | 0.0040715 | -0.0119742 | 0.7074216 | 0.4115609 | 0.4253586 | -0.5130683 | 0.9594909 | 0.0026904 | 0.0808409 | 0.0711747 | 0.0295209 | 1.0555284 | 0.4760111 | 0.0462933 |
5448 | GOBP_REGULATION_OF_CORTICOTROPIN_SECRETION | 5 | 0.0016571 | 0.9146647 | 0.2604094 | 0.3746456 | -0.2450928 | -0.0952455 | 0.0003965 | 0.3132623 | 0.1468403 | 0.3425760 | 0.7122607 | 1.0554270 | 0.4531571 | 0.0233895 |
9719 | GOMF_PHOSPHOLIPASE_A2_INHIBITOR_ACTIVITY | 6 | 0.0006784 | 0.5298444 | 0.5846402 | -0.3664600 | 0.1671073 | -0.5569840 | 0.0245996 | 0.0131341 | 0.1200652 | 0.4784218 | 0.0181387 | 1.0464168 | 0.5170431 | 0.0112513 |
9011 | GOMF_FATTY_ACYL_COA_SYNTHASE_ACTIVITY | 6 | 0.0015094 | 0.3447757 | 0.8486658 | 0.1328714 | 0.3791940 | -0.3058139 | 0.1436010 | 0.0003177 | 0.5730139 | 0.1077214 | 0.1945514 | 1.0459775 | 0.4189991 | 0.0215682 |
1558 | GOBP_FOREBRAIN_NEURON_FATE_COMMITMENT | 7 | 0.0009358 | 0.4141392 | 0.1984630 | 0.0218633 | -0.7339282 | 0.5602332 | 0.0577631 | 0.3632006 | 0.9202105 | 0.0007710 | 0.0102598 | 1.0314497 | 0.5053283 | 0.0147319 |
7033 | GOBP_STEM_CELL_FATE_SPECIFICATION | 6 | 0.0004211 | -0.0106066 | 0.4984348 | 0.2463986 | -0.8612479 | 0.0459367 | 0.9641142 | 0.0344830 | 0.2959346 | 0.0002584 | 0.8455064 | 1.0262164 | 0.5127878 | 0.0078344 |
5201 | GOBP_REGULATION_OF_ACTIVATION_OF_JANUS_KINASE_ACTIVITY | 7 | 0.0026975 | -0.6087401 | 0.1997265 | 0.7201602 | 0.3113810 | -0.1296884 | 0.0052832 | 0.3601537 | 0.0009672 | 0.1536804 | 0.5523914 | 1.0212067 | 0.4985692 | 0.0339074 |
1108 | GOBP_DETOXIFICATION_OF_NITROGEN_COMPOUND | 5 | 0.0038889 | -0.2288280 | -0.0876966 | 0.7547522 | -0.2456945 | 0.5482883 | 0.3755617 | 0.7341654 | 0.0034676 | 0.3413923 | 0.0337323 | 0.9953340 | 0.4692884 | 0.0447847 |
8583 | GOMF_ALCOHOL_DEHYDROGENASE_ACTIVITY_ZINC_DEPENDENT | 7 | 0.0029236 | 0.0002019 | -0.3680419 | 0.0602234 | 0.6997102 | -0.5839135 | 0.9992620 | 0.0917439 | 0.7826105 | 0.0013452 | 0.0074625 | 0.9846985 | 0.4904773 | 0.0359144 |
3913 | GOBP_PLATELET_DEGRANULATION | 7 | 0.0037807 | -0.1565079 | 0.5400176 | 0.5400176 | 0.5306653 | 0.2822951 | 0.4733383 | 0.0133494 | 0.0133494 | 0.0150385 | 0.1958785 | 0.9843926 | 0.3024694 | 0.0437147 |
7692 | GOCC_CLATHRIN_COMPLEX | 6 | 0.0041767 | -0.2092299 | 0.7058868 | -0.1026167 | -0.0266533 | -0.6301058 | 0.3747973 | 0.0027485 | 0.6633574 | 0.9099842 | 0.0075174 | 0.9748473 | 0.4838706 | 0.0471222 |
81 | GOBP_ADENYLATE_CYCLASE_INHIBITING_SEROTONIN_RECEPTOR_SIGNALING_PATHWAY | 7 | 0.0006664 | 0.3181413 | 0.1661988 | 0.6442216 | -0.2602690 | 0.5798496 | 0.1449436 | 0.4463830 | 0.0031588 | 0.2330796 | 0.0078876 | 0.9735619 | 0.3634555 | 0.0111058 |
4246 | GOBP_POSITIVE_REGULATION_OF_GASTRO_INTESTINAL_SYSTEM_SMOOTH_MUSCLE_CONTRACTION | 5 | 0.0016958 | 0.4310252 | 0.2564161 | 0.2620869 | -0.6183252 | -0.4467247 | 0.0950934 | 0.3207408 | 0.3101551 | 0.0166426 | 0.0836445 | 0.9497950 | 0.4741944 | 0.0237067 |
5939 | GOBP_REGULATION_OF_NATURAL_KILLER_CELL_CHEMOTAXIS | 7 | 0.0004717 | -0.1658732 | -0.3813149 | -0.0394868 | 0.7945098 | 0.2756130 | 0.4472744 | 0.0806223 | 0.8564366 | 0.0002719 | 0.2066729 | 0.9389795 | 0.4568747 | 0.0084825 |
2532 | GOBP_MITOCHONDRIAL_RESPIRASOME_ASSEMBLY | 10 | 0.0005639 | 0.2452398 | -0.3018512 | -0.4284242 | -0.7333850 | 0.0488601 | 0.1793112 | 0.0983538 | 0.0189733 | 0.0000591 | 0.7890520 | 0.9354383 | 0.3877727 | 0.0097306 |
9130 | GOMF_HEMOGLOBIN_BINDING | 9 | 0.0042981 | -0.3303850 | 0.1349615 | 0.5378552 | 0.6346348 | -0.2068066 | 0.0861001 | 0.4832401 | 0.0052013 | 0.0009765 | 0.2826743 | 0.9285404 | 0.4311401 | 0.0483094 |
557 | GOBP_CELLULAR_GLUCURONIDATION | 18 | 0.0000015 | 0.1433031 | 0.0778751 | 0.5487188 | 0.7202052 | -0.0766436 | 0.2925336 | 0.5673237 | 0.0000555 | 0.0000001 | 0.5734678 | 0.9231806 | 0.3364109 | 0.0000651 |
4404 | GOBP_POSITIVE_REGULATION_OF_MEMORY_T_CELL_DIFFERENTIATION | 9 | 0.0002866 | -0.3367174 | 0.6413319 | 0.2923702 | 0.3800210 | 0.3065953 | 0.0802500 | 0.0008622 | 0.1288023 | 0.0483571 | 0.1112175 | 0.9211852 | 0.3602277 | 0.0056735 |
8014 | GOCC_MHC_CLASS_I_PROTEIN_COMPLEX | 10 | 0.0000079 | -0.4498997 | -0.4661864 | 0.2070399 | -0.4797465 | -0.2955590 | 0.0137522 | 0.0106839 | 0.2569212 | 0.0086106 | 0.1055699 | 0.8832422 | 0.2913146 | 0.0002671 |
5377 | GOBP_REGULATION_OF_CELL_CHEMOTAXIS_TO_FIBROBLAST_GROWTH_FACTOR | 9 | 0.0019812 | -0.3921286 | -0.4235171 | -0.4746121 | 0.0345547 | -0.4506907 | 0.0416378 | 0.0277924 | 0.0136753 | 0.8575415 | 0.0192121 | 0.8733294 | 0.2123372 | 0.0266967 |
Single mitch for iageonset, cloz, cognit, igaf and prs.
# age of onset
iageonset_g <- mitch_import(x=iageonset,DEtype="prescored",geneTable=gt1)
## The input is a single dataframe; one contrast only. Converting
## it to a list for you.
## Note: Mean no. genes in input = 743553
## Note: no. genes in output = 21942
## Warning in mitch_import(x = iageonset, DEtype = "prescored", geneTable = gt1): Warning: less than half of the input genes are also in the
## output
m_iageonset <- mitch_calc(iageonset_g,genesets=gene_sets,cores=16, minsetsize=5, resrows=50, priority="effect")
## Note: Enrichments with large effect sizes may not be
## statistically significant.
head(m_iageonset$enrichment_result,10) %>% kbl(caption = "Top 10 effect size") %>% kable_paper("hover", full_width = F)
set | setSize | pANOVA | s.dist | p.adjustANOVA | |
---|---|---|---|---|---|
1151 | GOBP_DISRUPTION_OF_PLASMA_MEMBRANE_INTEGRITY_IN_ANOTHER_ORGANISM | 6 | 0.0000324 | -0.9794858 | 0.0114471 |
5448 | GOBP_REGULATION_OF_CORTICOTROPIN_SECRETION | 5 | 0.0003965 | 0.9146647 | 0.0634015 |
9743 | GOMF_PIRNA_BINDING | 5 | 0.0050563 | -0.7239003 | 0.2776762 |
4841 | GOBP_PREVENTION_OF_POLYSPERMY | 7 | 0.0012244 | -0.7055977 | 0.1287036 |
3183 | GOBP_NEGATIVE_REGULATION_OF_NEUTROPHIL_ACTIVATION | 5 | 0.0082941 | -0.6816702 | 0.3529942 |
6843 | GOBP_SEMICIRCULAR_CANAL_MORPHOGENESIS | 7 | 0.0032497 | 0.6423068 | 0.2187788 |
9563 | GOMF_N_N_DIMETHYLANILINE_MONOOXYGENASE_ACTIVITY | 5 | 0.0144199 | -0.6317819 | 0.4539507 |
928 | GOBP_COMPARTMENT_PATTERN_SPECIFICATION | 5 | 0.0149714 | 0.6282810 | 0.4610949 |
1922 | GOBP_INHIBITION_OF_NEUROEPITHELIAL_CELL_DIFFERENTIATION | 5 | 0.0153284 | 0.6260747 | 0.4610949 |
1235 | GOBP_EGG_ACTIVATION | 11 | 0.0003951 | -0.6169225 | 0.0634015 |
top <- m_iageonset$enrichment_result
top <- top[order(top$pANOVA),]
head(top,10) %>% kbl(caption = "Top 10 significance") %>% kable_paper("hover", full_width = F)
set | setSize | pANOVA | s.dist | p.adjustANOVA | |
---|---|---|---|---|---|
8335 | GOCC_SECRETORY_VESICLE | 1019 | 0e+00 | -0.1094220 | 0.0000350 |
9435 | GOMF_MOLECULAR_TRANSDUCER_ACTIVITY | 1357 | 0e+00 | -0.0936096 | 0.0000367 |
8333 | GOCC_SECRETORY_GRANULE | 855 | 0e+00 | -0.1115274 | 0.0000845 |
7665 | GOCC_CHROMOSOME | 1811 | 0e+00 | 0.0782278 | 0.0000845 |
10106 | GOMF_TRANSCRIPTION_REGULATOR_ACTIVITY | 1821 | 0e+00 | 0.0770863 | 0.0000988 |
1764 | GOBP_G_PROTEIN_COUPLED_RECEPTOR_SIGNALING_PATHWAY | 1133 | 1e-07 | -0.0947161 | 0.0001277 |
6854 | GOBP_SENSORY_PERCEPTION_OF_SMELL | 363 | 2e-07 | -0.1599746 | 0.0002390 |
9566 | GOMF_OLFACTORY_RECEPTOR_ACTIVITY | 337 | 2e-07 | -0.1643826 | 0.0002723 |
9948 | GOMF_SEQUENCE_SPECIFIC_DNA_BINDING | 1562 | 6e-07 | 0.0754558 | 0.0007261 |
8259 | GOCC_PROTEIN_DNA_COMPLEX | 1325 | 8e-07 | 0.0806791 | 0.0008340 |
nrow(subset(top,p.adjustANOVA<0.05))
## [1] 57
# cloz
cloz_g <- mitch_import(x=cloz,DEtype="prescored",geneTable=gt1)
## The input is a single dataframe; one contrast only. Converting
## it to a list for you.
## Note: Mean no. genes in input = 743553
## Note: no. genes in output = 21942
## Warning in mitch_import(x = cloz, DEtype = "prescored", geneTable = gt1): Warning: less than half of the input genes are also in the
## output
m_cloz <- mitch_calc(cloz_g,genesets=gene_sets,cores=16, minsetsize=5, resrows=50, priority="effect")
## Note: Enrichments with large effect sizes may not be
## statistically significant.
head(m_cloz$enrichment_result,10) %>% kbl(caption = "Top 10 effect size") %>% kable_paper("hover", full_width = F)
set | setSize | pANOVA | s.dist | p.adjustANOVA | |
---|---|---|---|---|---|
4879 | GOBP_PROTECTION_FROM_NATURAL_KILLER_CELL_MEDIATED_CYTOTOXICITY | 6 | 0.0002035 | -0.8755774 | 0.0228843 |
9011 | GOMF_FATTY_ACYL_COA_SYNTHASE_ACTIVITY | 6 | 0.0003177 | 0.8486658 | 0.0292890 |
9205 | GOMF_IGE_BINDING | 5 | 0.0010993 | 0.8427497 | 0.0637513 |
9209 | GOMF_IMMUNOGLOBULIN_RECEPTOR_ACTIVITY | 6 | 0.0006168 | 0.8071207 | 0.0450837 |
4612 | GOBP_POSITIVE_REGULATION_OF_PYROPTOSIS | 5 | 0.0017780 | -0.8069198 | 0.0837284 |
2355 | GOBP_MEDIUM_CHAIN_FATTY_ACID_CATABOLIC_PROCESS | 5 | 0.0040815 | 0.7415508 | 0.1347291 |
1003 | GOBP_CYTOLYSIS_BY_HOST_OF_SYMBIONT_CELLS | 6 | 0.0017867 | -0.7362935 | 0.0837284 |
2185 | GOBP_LOBAR_BRONCHUS_EPITHELIUM_DEVELOPMENT | 5 | 0.0048137 | 0.7279847 | 0.1466018 |
9373 | GOMF_MEDIUM_CHAIN_FATTY_ACID_COA_LIGASE_ACTIVITY | 8 | 0.0004795 | 0.7128659 | 0.0389407 |
2184 | GOBP_LOBAR_BRONCHUS_DEVELOPMENT | 6 | 0.0026904 | 0.7074216 | 0.1057370 |
top <- m_cloz$enrichment_result
top <- top[order(top$pANOVA),]
head(top,10) %>% kbl(caption = "Top 10 significance") %>% kable_paper("hover", full_width = F)
set | setSize | pANOVA | s.dist | p.adjustANOVA | |
---|---|---|---|---|---|
9566 | GOMF_OLFACTORY_RECEPTOR_ACTIVITY | 337 | 0 | -0.3878818 | 0.00e+00 |
6854 | GOBP_SENSORY_PERCEPTION_OF_SMELL | 363 | 0 | -0.3605992 | 0.00e+00 |
6850 | GOBP_SENSORY_PERCEPTION_OF_CHEMICAL_STIMULUS | 438 | 0 | -0.3120787 | 0.00e+00 |
1093 | GOBP_DETECTION_OF_STIMULUS_INVOLVED_IN_SENSORY_PERCEPTION | 451 | 0 | -0.3057683 | 0.00e+00 |
1092 | GOBP_DETECTION_OF_STIMULUS | 571 | 0 | -0.2374419 | 0.00e+00 |
9118 | GOMF_G_PROTEIN_COUPLED_RECEPTOR_ACTIVITY | 741 | 0 | -0.1894197 | 0.00e+00 |
6848 | GOBP_SENSORY_PERCEPTION | 862 | 0 | -0.1685532 | 0.00e+00 |
9564 | GOMF_ODORANT_BINDING | 100 | 0 | -0.3824311 | 0.00e+00 |
3451 | GOBP_NERVOUS_SYSTEM_PROCESS | 1381 | 0 | -0.0938900 | 5.50e-06 |
708 | GOBP_CELL_ACTIVATION | 1058 | 0 | 0.1039068 | 1.14e-05 |
nrow(subset(top,p.adjustANOVA<0.05))
## [1] 144
# cognit
cognit_g <- mitch_import(x=cognit,DEtype="prescored",geneTable=gt1)
## The input is a single dataframe; one contrast only. Converting
## it to a list for you.
## Note: Mean no. genes in input = 743553
## Note: no. genes in output = 21942
## Warning in mitch_import(x = cognit, DEtype = "prescored", geneTable = gt1): Warning: less than half of the input genes are also in the
## output
m_cognit <- mitch_calc(cognit_g,genesets=gene_sets,cores=16, minsetsize=5, resrows=50, priority="effect")
## Note: Enrichments with large effect sizes may not be
## statistically significant.
head(m_cognit$enrichment_result,10) %>% kbl(caption = "Top 10 effect size") %>% kable_paper("hover", full_width = F)
set | setSize | pANOVA | s.dist | p.adjustANOVA | |
---|---|---|---|---|---|
8594 | GOMF_ALKANE_1_MONOOXYGENASE_ACTIVITY | 5 | 0.0006853 | 0.8767197 | 0.0273940 |
9743 | GOMF_PIRNA_BINDING | 5 | 0.0013535 | 0.8274149 | 0.0446021 |
8782 | GOMF_CCR6_CHEMOKINE_RECEPTOR_BINDING | 5 | 0.0024358 | 0.7827050 | 0.0631031 |
1108 | GOBP_DETOXIFICATION_OF_NITROGEN_COMPOUND | 5 | 0.0034676 | 0.7547522 | 0.0808283 |
5245 | GOBP_REGULATION_OF_APOPTOTIC_PROCESS_IN_BONE_MARROW_CELL | 5 | 0.0045132 | 0.7333090 | 0.0931121 |
243 | GOBP_APOPTOTIC_PROCESS_IN_BONE_MARROW_CELL | 6 | 0.0019061 | 0.7317955 | 0.0552575 |
7832 | GOCC_EUKARYOTIC_TRANSLATION_INITIATION_FACTOR_2B_COMPLEX | 5 | 0.0049347 | -0.7259242 | 0.0978912 |
2471 | GOBP_MICROGLIAL_CELL_MEDIATED_CYTOTOXICITY | 5 | 0.0051546 | 0.7222957 | 0.1010479 |
5968 | GOBP_REGULATION_OF_NEUTROPHIL_DEGRANULATION | 8 | 0.0004187 | 0.7202175 | 0.0191290 |
5201 | GOBP_REGULATION_OF_ACTIVATION_OF_JANUS_KINASE_ACTIVITY | 7 | 0.0009672 | 0.7201602 | 0.0344508 |
top <- m_cognit$enrichment_result
top <- top[order(top$pANOVA),]
head(top,10) %>% kbl(caption = "Top 10 significance") %>% kable_paper("hover", full_width = F)
set | setSize | pANOVA | s.dist | p.adjustANOVA | |
---|---|---|---|---|---|
6790 | GOBP_RNA_PROCESSING | 1248 | 0 | -0.1728327 | 0 |
6748 | GOBP_RIBONUCLEOPROTEIN_COMPLEX_BIOGENESIS | 449 | 0 | -0.2823454 | 0 |
7617 | GOCC_CATALYTIC_COMPLEX | 1609 | 0 | -0.1425679 | 0 |
8122 | GOCC_NUCLEAR_PROTEIN_CONTAINING_COMPLEX | 1135 | 0 | -0.1641531 | 0 |
6770 | GOBP_RIBOSOME_BIOGENESIS | 303 | 0 | -0.3007690 | 0 |
8131 | GOCC_NUCLEOLUS | 1318 | 0 | -0.1394699 | 0 |
9435 | GOMF_MOLECULAR_TRANSDUCER_ACTIVITY | 1357 | 0 | 0.1366308 | 0 |
8049 | GOCC_MITOCHONDRION | 1569 | 0 | -0.1225811 | 0 |
2739 | GOBP_NCRNA_PROCESSING | 415 | 0 | -0.2311716 | 0 |
1764 | GOBP_G_PROTEIN_COUPLED_RECEPTOR_SIGNALING_PATHWAY | 1133 | 0 | 0.1399526 | 0 |
nrow(subset(top,p.adjustANOVA<0.05))
## [1] 321
# igaf
igaf_g <- mitch_import(x=igaf,DEtype="prescored",geneTable=gt1)
## The input is a single dataframe; one contrast only. Converting
## it to a list for you.
## Note: Mean no. genes in input = 743553
## Note: no. genes in output = 21942
## Warning in mitch_import(x = igaf, DEtype = "prescored", geneTable = gt1): Warning: less than half of the input genes are also in the
## output
m_igaf <- mitch_calc(igaf_g,genesets=gene_sets,cores=16, minsetsize=5, resrows=50, priority="effect")
## Note: Enrichments with large effect sizes may not be
## statistically significant.
head(m_igaf$enrichment_result,10) %>% kbl(caption = "Top 10 effect size") %>% kable_paper("hover", full_width = F)
set | setSize | pANOVA | s.dist | p.adjustANOVA | |
---|---|---|---|---|---|
9129 | GOMF_HEMOGLOBIN_ALPHA_BINDING | 5 | 0.0006753 | 0.8777590 | 0.0125189 |
7033 | GOBP_STEM_CELL_FATE_SPECIFICATION | 6 | 0.0002584 | -0.8612479 | 0.0057536 |
208 | GOBP_ANTIGEN_PROCESSING_AND_PRESENTATION_ENDOGENOUS_LIPID_ANTIGEN_VIA_MHC_CLASS_IB | 5 | 0.0010892 | 0.8434244 | 0.0177483 |
9310 | GOMF_LIPID_ANTIGEN_BINDING | 5 | 0.0010892 | 0.8434244 | 0.0177483 |
5066 | GOBP_PROXIMAL_DISTAL_PATTERN_FORMATION_INVOLVED_IN_NEPHRON_DEVELOPMENT | 5 | 0.0011173 | -0.8415645 | 0.0180900 |
9275 | GOMF_KETOSTEROID_MONOOXYGENASE_ACTIVITY | 5 | 0.0013588 | 0.8271231 | 0.0209591 |
5939 | GOBP_REGULATION_OF_NATURAL_KILLER_CELL_CHEMOTAXIS | 7 | 0.0002719 | 0.7945098 | 0.0059715 |
7502 | GOBP_XENOBIOTIC_GLUCURONIDATION | 6 | 0.0007881 | 0.7912868 | 0.0140506 |
1883 | GOBP_HYPOXIA_INDUCIBLE_FACTOR_1ALPHA_SIGNALING_PATHWAY | 5 | 0.0031303 | -0.7629393 | 0.0389693 |
1538 | GOBP_FLAVONOID_GLUCURONIDATION | 5 | 0.0031461 | 0.7625382 | 0.0391184 |
top <- m_igaf$enrichment_result
top <- top[order(top$pANOVA),]
head(top) %>% kbl(caption = "Top 10 significance") %>% kable_paper("hover", full_width = F)
set | setSize | pANOVA | s.dist | p.adjustANOVA | |
---|---|---|---|---|---|
9566 | GOMF_OLFACTORY_RECEPTOR_ACTIVITY | 337 | 0 | 0.6203288 | 0 |
6854 | GOBP_SENSORY_PERCEPTION_OF_SMELL | 363 | 0 | 0.5863283 | 0 |
1093 | GOBP_DETECTION_OF_STIMULUS_INVOLVED_IN_SENSORY_PERCEPTION | 451 | 0 | 0.5193368 | 0 |
6850 | GOBP_SENSORY_PERCEPTION_OF_CHEMICAL_STIMULUS | 438 | 0 | 0.5183220 | 0 |
1092 | GOBP_DETECTION_OF_STIMULUS | 571 | 0 | 0.4412943 | 0 |
9118 | GOMF_G_PROTEIN_COUPLED_RECEPTOR_ACTIVITY | 741 | 0 | 0.3484517 | 0 |
nrow(subset(top,p.adjustANOVA<0.05))
## [1] 931
# prs
prs_g <- mitch_import(x=prs,DEtype="prescored",geneTable=gt1)
## The input is a single dataframe; one contrast only. Converting
## it to a list for you.
## Note: Mean no. genes in input = 743553
## Note: no. genes in output = 21942
## Warning in mitch_import(x = prs, DEtype = "prescored", geneTable = gt1): Warning: less than half of the input genes are also in the
## output
m_prs <- mitch_calc(prs_g,genesets=gene_sets,cores=16, minsetsize=5, resrows=50, priority="effect")
## Note: Enrichments with large effect sizes may not be
## statistically significant.
head(m_prs$enrichment_result,10) %>% kbl(caption = "Top 10 effect size") %>% kable_paper("hover", full_width = F)
set | setSize | pANOVA | s.dist | p.adjustANOVA | |
---|---|---|---|---|---|
866 | GOBP_CHORIONIC_TROPHOBLAST_CELL_PROLIFERATION | 5 | 0.0005413 | 0.8932580 | 0.1360884 |
9659 | GOMF_PEPTIDOGLYCAN_IMMUNE_RECEPTOR_ACTIVITY | 5 | 0.0022379 | -0.7892875 | 0.2948489 |
3049 | GOBP_NEGATIVE_REGULATION_OF_INTERLEUKIN_6_MEDIATED_SIGNALING_PATHWAY | 8 | 0.0005997 | -0.7005790 | 0.1375828 |
5066 | GOBP_PROXIMAL_DISTAL_PATTERN_FORMATION_INVOLVED_IN_NEPHRON_DEVELOPMENT | 5 | 0.0082562 | 0.6820714 | 0.5415738 |
7856 | GOCC_FC_RECEPTOR_COMPLEX | 5 | 0.0085837 | 0.6786616 | 0.5439996 |
7509 | GOBP_XYLULOSE_5_PHOSPHATE_METABOLIC_PROCESS | 6 | 0.0051745 | 0.6590840 | 0.4332814 |
3775 | GOBP_PEPTIDOGLYCAN_METABOLIC_PROCESS | 6 | 0.0062729 | -0.6442834 | 0.4719874 |
2847 | GOBP_NEGATIVE_REGULATION_OF_CELLULAR_RESPONSE_TO_TRANSFORMING_GROWTH_FACTOR_BETA_STIMULUS | 5 | 0.0138782 | 0.6353376 | 0.6250317 |
7692 | GOCC_CLATHRIN_COMPLEX | 6 | 0.0075174 | -0.6301058 | 0.5128338 |
7604 | GOCC_B_CELL_RECEPTOR_COMPLEX | 5 | 0.0162681 | 0.6204768 | 0.6281956 |
top <- m_prs$enrichment_result
top <- top[order(top$pANOVA),]
head(top,10) %>% kbl(caption = "Top 10 significance") %>% kable_paper("hover", full_width = F)
set | setSize | pANOVA | s.dist | p.adjustANOVA | |
---|---|---|---|---|---|
8922 | GOMF_DNA_BINDING_TRANSCRIPTION_FACTOR_ACTIVITY | 1361 | 0.0e+00 | 0.1159164 | 0.0000000 |
9948 | GOMF_SEQUENCE_SPECIFIC_DNA_BINDING | 1562 | 0.0e+00 | 0.1058921 | 0.0000000 |
7665 | GOCC_CHROMOSOME | 1811 | 0.0e+00 | 0.0987343 | 0.0000000 |
10106 | GOMF_TRANSCRIPTION_REGULATOR_ACTIVITY | 1821 | 0.0e+00 | 0.0935796 | 0.0000001 |
8259 | GOCC_PROTEIN_DNA_COMPLEX | 1325 | 0.0e+00 | 0.1077949 | 0.0000001 |
8818 | GOMF_CIS_REGULATORY_REGION_SEQUENCE_SPECIFIC_DNA_BINDING | 1138 | 0.0e+00 | 0.1082235 | 0.0000012 |
3374 | GOBP_NEGATIVE_REGULATION_OF_TRANSCRIPTION_BY_RNA_POLYMERASE_II | 891 | 1.0e-07 | 0.1042355 | 0.0001889 |
3310 | GOBP_NEGATIVE_REGULATION_OF_RNA_BIOSYNTHETIC_PROCESS | 1211 | 3.0e-07 | 0.0877487 | 0.0003473 |
3196 | GOBP_NEGATIVE_REGULATION_OF_NUCLEOBASE_CONTAINING_COMPOUND_METABOLIC_PROCESS | 1430 | 7.0e-07 | 0.0785230 | 0.0007464 |
4641 | GOBP_POSITIVE_REGULATION_OF_RNA_METABOLIC_PROCESS | 1805 | 2.6e-06 | 0.0666594 | 0.0026613 |
nrow(subset(top,p.adjustANOVA<0.05))
## [1] 22
Now make a barplot of these top findings.
par(mar=c(5,27,5,3))
# iageonset
top <- m_iageonset$enrichment_result
top <- subset(top,p.adjustANOVA<0.05)
up <- head(subset(top,s.dist>0),20)
dn <- head(subset(top,s.dist<0),20)
top <- rbind(up,dn)
vec=top$s.dist
names(vec)=top$set
names(vec) <- gsub("_"," ",names(vec))
vec <- vec[order(vec)]
barplot(abs(vec),col=sign(-vec)+3,horiz=TRUE,las=1,cex.names=0.7,main="Age of onset",xlab="ES")
grid()
# cloz
top <- m_cloz$enrichment_result
top <- subset(top,p.adjustANOVA<0.05)
up <- head(subset(top,s.dist>0),20)
dn <- head(subset(top,s.dist<0),20)
top <- rbind(up,dn)
vec=top$s.dist
names(vec)=top$set
names(vec) <- gsub("_"," ",names(vec))
vec <- vec[order(vec)]
barplot(abs(vec),col=sign(-vec)+3,horiz=TRUE,las=1,cex.names=0.7,main="Clozapine",xlab="ES")
grid()
# cognitive deficit
top <- m_cognit$enrichment_result
top <- subset(top,p.adjustANOVA<0.05)
up <- head(subset(top,s.dist>0),20)
dn <- head(subset(top,s.dist<0),20)
top <- rbind(up,dn)
vec=top$s.dist
names(vec)=top$set
names(vec) <- gsub("_"," ",names(vec))
vec <- vec[order(vec)]
barplot(abs(vec),col=sign(-vec)+3,horiz=TRUE,las=1,cex.names=0.6,main="Cognitive deficit",xlab="ES")
grid()
# igaf
top <- m_igaf$enrichment_result
top <- subset(top,p.adjustANOVA<0.05)
up <- head(subset(top,s.dist>0),20)
dn <- head(subset(top,s.dist<0),20)
top <- rbind(up,dn)
vec=top$s.dist
names(vec)=top$set
names(vec) <- gsub("_"," ",names(vec))
vec <- vec[order(vec)]
barplot(abs(vec),col=sign(-vec)+3,horiz=TRUE,las=1,cex.names=0.6,main="iGAF score",xlab="ES")
grid()
# prs
top <- m_prs$enrichment_result
top <- top[order(top$pANOVA),]
top <- subset(top,p.adjustANOVA<0.05)
up <- head(subset(top,s.dist>0),20)
dn <- head(subset(top,s.dist<0),20)
top <- rbind(up,dn)
vec=top$s.dist
names(vec)=top$set
names(vec) <- gsub("_"," ",names(vec))
vec <- vec[order(vec)]
barplot(abs(vec),col=sign(-vec)+3,horiz=TRUE,las=1,cex.names=0.7,main="PRS",xlab="ES")
grid()
par( mar = c(5.1, 4.1, 4.1, 2.1) )
if(!file.exists("mitch_iageonset.html")) {
mitch_report(res=m_iageonset,outfile="mitch_iageonset.html")
}
if(!file.exists("mitch_cloz.html")) {
mitch_report(res=m_cloz,outfile="mitch_cloz.html")
}
if(!file.exists("mitch_cognit.html")) {
mitch_report(res=m_cognit,outfile="mitch_cognit.html")
}
if(!file.exists("mitch_igaf.html")) {
mitch_report(res=m_igaf,outfile="mitch_igaf.html")
}
if(!file.exists("mitch_prs.html")) {
mitch_report(res=m_prs,outfile="mitch_prs.html")
}
sessionInfo()
## R version 4.4.0 (2024-04-24)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 22.04.4 LTS
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.10.0
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: Australia/Melbourne
## tzcode source: system (glibc)
##
## attached base packages:
## [1] parallel stats4 stats graphics grDevices utils datasets
## [8] methods base
##
## other attached packages:
## [1] kableExtra_1.4.0
## [2] mitch_1.15.6
## [3] HGNChelper_0.8.1
## [4] IlluminaHumanMethylationEPICanno.ilm10b4.hg19_0.6.0
## [5] minfi_1.48.0
## [6] bumphunter_1.44.0
## [7] locfit_1.5-9.9
## [8] iterators_1.0.14
## [9] foreach_1.5.2
## [10] Biostrings_2.70.2
## [11] XVector_0.42.0
## [12] SummarizedExperiment_1.32.0
## [13] Biobase_2.62.0
## [14] MatrixGenerics_1.14.0
## [15] matrixStats_1.3.0
## [16] GenomicRanges_1.54.1
## [17] GenomeInfoDb_1.38.6
## [18] IRanges_2.36.0
## [19] S4Vectors_0.40.2
## [20] BiocGenerics_0.48.1
## [21] limma_3.58.1
##
## loaded via a namespace (and not attached):
## [1] splines_4.4.0 later_1.3.2
## [3] BiocIO_1.12.0 bitops_1.0-7
## [5] filelock_1.0.3 tibble_3.2.1
## [7] preprocessCore_1.64.0 XML_3.99-0.16.1
## [9] lifecycle_1.0.4 lattice_0.22-6
## [11] MASS_7.3-60.2 base64_2.0.1
## [13] scrime_1.3.5 magrittr_2.0.3
## [15] sass_0.4.9 rmarkdown_2.26
## [17] jquerylib_0.1.4 yaml_2.3.8
## [19] httpuv_1.6.15 doRNG_1.8.6
## [21] askpass_1.2.0 DBI_1.2.2
## [23] RColorBrewer_1.1-3 abind_1.4-5
## [25] zlibbioc_1.48.0 quadprog_1.5-8
## [27] purrr_1.0.2 RCurl_1.98-1.14
## [29] rappdirs_0.3.3 GenomeInfoDbData_1.2.11
## [31] genefilter_1.84.0 annotate_1.80.0
## [33] svglite_2.1.3 DelayedMatrixStats_1.24.0
## [35] codetools_0.2-20 DelayedArray_0.28.0
## [37] xml2_1.3.6 tidyselect_1.2.1
## [39] beanplot_1.3.1 BiocFileCache_2.10.1
## [41] illuminaio_0.44.0 GenomicAlignments_1.38.2
## [43] jsonlite_1.8.8 multtest_2.58.0
## [45] survival_3.6-4 systemfonts_1.0.6
## [47] tools_4.4.0 progress_1.2.3
## [49] Rcpp_1.0.12 glue_1.7.0
## [51] gridExtra_2.3 SparseArray_1.2.4
## [53] xfun_0.43 dplyr_1.1.4
## [55] HDF5Array_1.30.1 fastmap_1.1.1
## [57] GGally_2.2.1 rhdf5filters_1.14.1
## [59] fansi_1.0.6 openssl_2.1.2
## [61] caTools_1.18.2 digest_0.6.35
## [63] R6_2.5.1 mime_0.12
## [65] colorspace_2.1-0 gtools_3.9.5
## [67] biomaRt_2.58.2 RSQLite_2.3.6
## [69] utf8_1.2.4 tidyr_1.3.1
## [71] generics_0.1.3 data.table_1.15.4
## [73] rtracklayer_1.62.0 prettyunits_1.2.0
## [75] httr_1.4.7 htmlwidgets_1.6.4
## [77] S4Arrays_1.2.0 ggstats_0.6.0
## [79] pkgconfig_2.0.3 gtable_0.3.5
## [81] blob_1.2.4 siggenes_1.76.0
## [83] htmltools_0.5.8.1 echarts4r_0.4.5
## [85] scales_1.3.0 png_0.1-8
## [87] knitr_1.46 rstudioapi_0.16.0
## [89] reshape2_1.4.4 tzdb_0.4.0
## [91] rjson_0.2.21 nlme_3.1-164
## [93] curl_5.2.1 cachem_1.0.8
## [95] rhdf5_2.46.1 stringr_1.5.1
## [97] KernSmooth_2.23-22 AnnotationDbi_1.64.1
## [99] restfulr_0.0.15 GEOquery_2.70.0
## [101] pillar_1.9.0 grid_4.4.0
## [103] reshape_0.8.9 vctrs_0.6.5
## [105] gplots_3.1.3.1 promises_1.3.0
## [107] dbplyr_2.5.0 xtable_1.8-4
## [109] beeswarm_0.4.0 evaluate_0.23
## [111] readr_2.1.5 GenomicFeatures_1.54.3
## [113] cli_3.6.2 compiler_4.4.0
## [115] Rsamtools_2.18.0 rlang_1.1.3
## [117] crayon_1.5.2 rngtools_1.5.2
## [119] nor1mix_1.3-3 mclust_6.1.1
## [121] plyr_1.8.9 stringi_1.8.3
## [123] viridisLite_0.4.2 BiocParallel_1.36.0
## [125] munsell_0.5.1 Matrix_1.7-0
## [127] hms_1.1.3 sparseMatrixStats_1.14.0
## [129] bit64_4.0.5 ggplot2_3.5.1
## [131] Rhdf5lib_1.24.2 KEGGREST_1.42.0
## [133] statmod_1.5.0 shiny_1.8.1.1
## [135] highr_0.10 memoise_2.0.1.9000
## [137] bslib_0.7.0 bit_4.0.5
1. Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP, Tamayo P. The molecular signatures database hallmark gene set collection. Cell Syst 2015; 1:417–25.