Source: https://github.com/markziemann/shoulder-instability-osteroarthritis
Compare “tear edge” (AD-CAB 3001-AD-CAB 3026) to the “tendon body” (AD-CAB 3001-AD-CAB 3026) in patients who heal as compared to those that don’t heal. In the sample sheet this is defines in the ‘Tendon integrity 2 years post.op’ column, designated ‘torn’ or ‘intact’, so that we are comparing like tissue.
General steps are to load the sample sheet and profiling data, select the needed samples/groups, and then run MDS, DE and pathway analysis.
suppressPackageStartupMessages({
library("R.utils")
library("zoo")
library("tidyverse")
library("reshape2")
library("DESeq2")
library("gplots")
library("fgsea")
library("MASS")
library("mitch")
library("eulerr")
library("limma")
library("topconfects")
library("kableExtra")
})
Patients AD-CAB 3001-AD-CAB 3026.
They have both “tear” (tear edge) and “tendon” (tendon body) samples from intact and torn tissue.
x <- readRDS("counts.rds")
ss <- read.table("samplesheets/pheno_data.tsv",header=TRUE)
ss <- ss[grep("AD-CAB_3",ss$Participant_ID),]
ss <- ss[which(ss$Tendon_integrity_2_years_post.op != "NA"),]
ss <- ss[ss$Tissue != "capsule",]
head(ss,3)
## Participant_ID Case Redcap_ID Tissue fastq pvt.pub
## 93 AD-CAB_3001 RC 53 tendon 1-2_S67_L001_R1_001.fastq.gz <NA>
## 94 AD-CAB_3002 RC 54 tendon 2-2_S68_L001_R1_001.fastq.gz <NA>
## 95 AD-CAB_3003 RC 55 tendon 3-2_S69_L001_R1_001.fastq.gz <NA>
## Age Sex Primary_OA Cuff_Arthropathy Prosthesis Affected_Side Height_cm
## 93 67 M <NA> <NA> <NA> Left 177.8
## 94 58 M <NA> <NA> <NA> Right 179.0
## 95 56 M <NA> <NA> <NA> Left 179.0
## Weight_kg BMI ASA Smoking Diabetes Hypercholesterolaemia Hypertension
## 93 120 37.90 2 Ever_smoker No Yes Yes
## 94 79 25.00 1 Never_smoker No No No
## 95 85 26.52 1 Never_smoker No Yes <NA>
## Thyroid CRP Creat eGFR Urea Fast_Glucose hba1c Metabolic_Syndrome
## 93 No 2.9 83 84 7.0 5.2 5.6 Yes
## 94 No 0.7 70 90 6.9 5.4 5.3 No
## 95 No 2.9 72 90 4.3 5.2 5.4 No
## Tendon_integrity_2_years_post.op ASES_2_years_post.op_Pain
## 93 Torn NA
## 94 Torn NA
## 95 Intact 50
## ASES_2_years_post.op_ADL ASES_2_years_post.op_Total Oxford_Baseline
## 93 NA NA 25
## 94 NA NA 33
## 95 50 100 38
## Oxford_3_month Oxford_12_month Oxford_24_month QuickDASH_ QuickDASH_3_month
## 93 41 46 NA 38.6 13.6
## 94 NA 48 NA 29.5 NA
## 95 38 44 48 29.5 27.3
## QuickDASH_12_month QuickDASH_24_month EQ.5D.3L_Baseline EQ.5D.3L_3_month
## 93 13.6 NA 11222 11123
## 94 0.0 NA 11111 NA
## 95 9.1 0 11221 11121
## EQ.5D.3L_12_month EQ.5D.3L_24_month EQVAS_Baseline EQVAS_3_month
## 93 21222 NA 90 50
## 94 11111 NA 90 NA
## 95 11111 22222 80 70
## EQVAS_12_month EQVAS_24_month
## 93 60 NA
## 94 90 NA
## 95 80 60
table(ss$Tissue)
##
## tear tendon
## 21 21
table(ss$Tendon_integrity_2_years_post.op)
##
## Intact Torn
## 28 14
table(paste(ss$Tissue ,ss$Tendon_integrity_2_years_post.op))
##
## tear Intact tear Torn tendon Intact tendon Torn
## 14 7 14 7
paste(ss$Participant_ID,ss$Tissue ,ss$Tendon_integrity_2_years_post.op)
## [1] "AD-CAB_3001 tendon Torn" "AD-CAB_3002 tendon Torn"
## [3] "AD-CAB_3003 tendon Intact" "AD-CAB_3004 tendon Intact"
## [5] "AD-CAB_3005 tendon Torn" "AD-CAB_3006 tendon Torn"
## [7] "AD-CAB_3007 tendon Intact" "AD-CAB_3008 tendon Intact"
## [9] "AD-CAB_3009 tendon Intact" "AD-CAB_3010 tendon Intact"
## [11] "AD-CAB_3011 tendon Intact" "AD-CAB_3014 tendon Intact"
## [13] "AD-CAB_3015 tendon Intact" "AD-CAB_3016 tendon Torn"
## [15] "AD-CAB_3017 tendon Torn" "AD-CAB_3018 tendon Intact"
## [17] "AD-CAB_3019 tendon Intact" "AD-CAB_3020 tendon Intact"
## [19] "AD-CAB_3021 tendon Torn" "AD-CAB_3023 tendon Intact"
## [21] "AD-CAB_3025 tendon Intact" "AD-CAB_3001 tear Torn"
## [23] "AD-CAB_3002 tear Torn" "AD-CAB_3003 tear Intact"
## [25] "AD-CAB_3004 tear Intact" "AD-CAB_3005 tear Torn"
## [27] "AD-CAB_3006 tear Torn" "AD-CAB_3007 tear Intact"
## [29] "AD-CAB_3008 tear Intact" "AD-CAB_3009 tear Intact"
## [31] "AD-CAB_3010 tear Intact" "AD-CAB_3011 tear Intact"
## [33] "AD-CAB_3014 tear Intact" "AD-CAB_3015 tear Intact"
## [35] "AD-CAB_3016 tear Torn" "AD-CAB_3017 tear Torn"
## [37] "AD-CAB_3018 tear Intact" "AD-CAB_3019 tear Intact"
## [39] "AD-CAB_3020 tear Intact" "AD-CAB_3021 tear Torn"
## [41] "AD-CAB_3023 tear Intact" "AD-CAB_3025 tear Intact"
sapply(strsplit(gsub("-",".",gsub("_L001","|",gsub("_R1","|",ss$fastq))),"\\|"),"[[",1) %in% colnames(x)
## [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [16] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [31] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
ss$data <- sapply(strsplit(gsub("-",".",gsub("_L001","|",gsub("_R1","|",ss$fastq))),"\\|"),"[[",1)
rownames(ss)<-ss$data
Now subset the data for the different comparisons.
Tendon v tear (intact) versus Tendon v tear (torn).
Comparisons:
Tendon v tear (intact): DE1.
Tendon v tear (torn): DE2.
Then run a mitch analysis to see the differences.
The other approach is to find the direct differences between intact and torn samples.
tendon (intact) vs tendon (torn).
tear (intact) vs tear (torn).
#de1
ss1 <- ss[ss$Tendon_integrity_2_years_post.op=="Intact",]
x1 <- x[,which(colnames(x) %in% ss1$data)]
ss1 %>% kbl(caption = "Intact tendon group") %>% kable_paper("hover", full_width = F)
Participant_ID | Case | Redcap_ID | Tissue | fastq | pvt.pub | Age | Sex | Primary_OA | Cuff_Arthropathy | Prosthesis | Affected_Side | Height_cm | Weight_kg | BMI | ASA | Smoking | Diabetes | Hypercholesterolaemia | Hypertension | Thyroid | CRP | Creat | eGFR | Urea | Fast_Glucose | hba1c | Metabolic_Syndrome | Tendon_integrity_2_years_post.op | ASES_2_years_post.op_Pain | ASES_2_years_post.op_ADL | ASES_2_years_post.op_Total | Oxford_Baseline | Oxford_3_month | Oxford_12_month | Oxford_24_month | QuickDASH_ | QuickDASH_3_month | QuickDASH_12_month | QuickDASH_24_month | EQ.5D.3L_Baseline | EQ.5D.3L_3_month | EQ.5D.3L_12_month | EQ.5D.3L_24_month | EQVAS_Baseline | EQVAS_3_month | EQVAS_12_month | EQVAS_24_month | data | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3.2_S69 | AD-CAB_3003 | RC | 55 | tendon | 3-2_S69_L001_R1_001.fastq.gz | NA | 56 | M | NA | NA | NA | Left | 179.00 | 85 | 26.52 | 1 | Never_smoker | No | Yes | NA | No | 2.9 | 72 | 90 | 4.3 | 5.2 | 5.4 | No | Intact | 50 | 50 | 100 | 38 | 38 | 44 | 48 | 29.5 | 27.3 | 9.1 | 0.0 | 11221 | 11121 | 11111 | 22222 | 80 | 70 | 80 | 60 | 3.2_S69 |
4.2_S70 | AD-CAB_3004 | RC | 56 | tendon | 4-2_S70_L001_R1_001.fastq.gz | NA | 68 | M | NA | NA | NA | Right | 185.00 | 95 | 28.00 | 2 | Ever_smoker | No | Yes | Yes | No | 3.6 | 91 | 74 | 7.8 | 6.7 | 5.7 | No | Intact | 45 | 50 | 95 | 24 | 41 | 46 | 48 | NA | 18.2 | 13.6 | 0.0 | 11232 | 11121 | 11121 | 11111 | NA | 80 | 60 | 52 | 4.2_S70 |
7.2_S73 | AD-CAB_3007 | RC | 59 | tendon | 7-2_S73_L001_R1_001.fastq.gz | NA | 63 | F | NA | NA | NA | Right | 163.00 | 57 | 21.50 | 1 | Ever_smoker | No | No | No | No | 2.9 | 53 | 90 | 29.0 | NA | 5.3 | No | Intact | 50 | 50 | 100 | 37 | 38 | 46 | 48 | 36.4 | 18.2 | 11.4 | 2.3 | 11122 | 11111 | 11111 | 11111 | 93 | 97 | 100 | 100 | 7.2_S73 |
8.2_S74 | AD-CAB_3008 | RC | 60 | tendon | 8-2_S74_L001_R1_001.fastq.gz | NA | 70 | M | NA | NA | NA | Left | 167.00 | 71 | 25.50 | 2 | Never_smoker | No | Yes | Yes | No | 2.9 | 87 | 77 | 7.3 | 5.5 | 5.4 | No | Intact | NA | NA | NA | 24 | 25 | 47 | NA | 54.5 | 54.5 | 11.4 | NA | 22221 | 22221 | 11111 | NA | 90 | 90 | 92 | NA | 8.2_S74 |
9.2_S75 | AD-CAB_3009 | RC | 61 | tendon | 9-2_S75_L001_R1_001.fastq.gz | NA | 68 | M | NA | NA | NA | Right | 182.00 | 83 | 25.10 | 2 | Ever_smoker | No | No | No | No | 2.9 | 79 | 88 | 7.5 | 5.8 | 5.8 | No | Intact | 50 | 50 | 100 | 35 | 41 | 43 | 46 | 52.3 | 11.4 | 4.5 | 2.3 | 11211 | 11121 | 11111 | 11111 | 85 | 96 | 90 | 90 | 9.2_S75 |
10.2_S76 | AD-CAB_3010 | RC | 62 | tendon | 10-2_S76_L001_R1_001.fastq.gz | NA | 58 | M | NA | NA | NA | Left | 179.00 | 98 | 30.00 | 2 | Never_smoker | No | No | No | Yes | 2.9 | 82 | 90 | 5.6 | 4.9 | 5.1 | No | Intact | 45 | 17 | 62 | 21 | 45 | 43 | 44 | 45.5 | 4.5 | 11.4 | 20.5 | 11221 | 11111 | 11121 | 11221 | 70 | 70 | 75 | 85 | 10.2_S76 |
11.2_S77 | AD-CAB_3011 | RC | 63 | tendon | 11-2_S77_L001_R1_001.fastq.gz | NA | 50 | M | NA | NA | NA | Right | 180.00 | 82 | 25.00 | 1 | Never_smoker | No | Yes | No | No | 2.9 | 99 | 76 | 6.7 | 5.7 | 6.0 | No | Intact | 35 | 18 | 53 | 18 | 38 | 44 | 46 | 61.4 | 31.8 | 6.8 | 20.5 | 11221 | 11222 | 11111 | 11121 | 75 | 83 | 75 | 78 | 11.2_S77 |
14.2_S80 | AD-CAB_3014 | RC | 66 | tendon | 14-2_S80_L001_R1_001.fastq.gz | NA | 70 | M | NA | NA | NA | Left | 1.77 | 100 | 32.00 | 3 | Ever_smoker | No | Yes | Yes | No | 2.9 | 86 | 79 | 7.1 | 6.3 | 5.8 | Yes | Intact | 50 | 45 | 95 | 27 | 43 | 47 | 47 | 50.0 | 9.1 | 6.8 | 9.1 | 12221 | 11111 | 11111 | 11111 | 90 | 90 | 88 | 85 | 14.2_S80 |
15.2_S81 | AD-CAB_3015 | RC | 69 | tendon | 15-2_S81_L001_R1_001.fastq.gz | NA | 66 | M | NA | NA | NA | Left | 175.00 | 95 | 31.00 | 3 | Never_smoker | No | Yes | Yes | No | 2.9 | 53 | 90 | 4.1 | 5.5 | 5.2 | Yes | Intact | 50 | 47 | 97 | 25 | NA | NA | 48 | 40.9 | NA | NA | 13.6 | 11121 | NA | NA | 11121 | 78 | NA | NA | 93 | 15.2_S81 |
18.2_S84 | AD-CAB_3018 | RC | 72 | tendon | 18-2_S84_L001_R1_001.fastq.gz | NA | 72 | M | NA | NA | NA | Right | 170.00 | 85 | 29.00 | 2 | Ever_smoker | No | Yes | Yes | No | 3.2 | 82 | 82 | 6.4 | 5.5 | 5.5 | No | Intact | 50 | 50 | 100 | 36 | 37 | 48 | 48 | 31.8 | 13.6 | 9.1 | 0.0 | 11122 | 11112 | 11111 | 11111 | 90 | 82 | 92 | 90 | 18.2_S84 |
19.2_S85 | AD-CAB_3019 | RC | 73 | tendon | 19-2_S85_L001_R1_001.fastq.gz | NA | 45 | F | NA | NA | NA | Right | 163.00 | 98 | 36.90 | 2 | Never_smoker | No | Yes | Yes | No | 4.3 | 70 | 57 | 4.6 | 4.7 | 5.7 | Yes | Intact | 50 | 35 | 85 | 32 | 28 | 45 | 47 | 36.4 | 38.6 | 18.2 | 13.6 | 11221 | 11221 | 11121 | 11121 | 50 | 58 | 45 | 34 | 19.2_S85 |
20.2_S86 | AD-CAB_3020 | RC | 67 | tendon | 20-2_S86_L001_R1_001.fastq.gz | NA | 61 | M | NA | NA | NA | Right | 180.00 | 92 | 29.00 | 1 | Ever_smoker | No | No | No | No | 2.9 | 78 | 57 | 3.9 | 5.5 | 5.6 | No | Intact | 50 | 40 | 90 | 30 | 34 | 36 | 44 | 50.0 | 34.1 | 31.8 | 0.0 | 12321 | 12321 | 12211 | 12211 | 77 | 40 | 70 | 70 | 20.2_S86 |
23.2_S89 | AD-CAB_3023 | RC | 75 | tendon | 23-2_S89_L001_R1_001.fastq.gz | NA | 58 | M | NA | NA | NA | Right | 179.00 | 81 | 25.00 | 2 | Ever_smoker | No | Yes | No | No | 2.9 | 75 | 57 | 5.7 | 5.4 | 5.7 | No | Intact | 50 | 40 | 90 | 42 | 43 | 48 | 48 | 15.9 | 15.9 | 0.0 | 2.3 | 11211 | 11121 | 11111 | 11111 | 85 | 85 | 90 | 85 | 23.2_S89 |
25.2_S91 | AD-CAB_3025 | RC | 77 | tendon | 25-2_S91_L001_R1_001.fastq.gz | NA | 62 | F | NA | NA | NA | Left | 157.00 | 95 | 38.50 | 2 | Never_smoker | No | Yes | Yes | No | 12.0 | 72 | 57 | 6.6 | 6.2 | 5.7 | Yes | Intact | 45 | 43 | 88 | 26 | 36 | 38 | 41 | 59.1 | 29.5 | 31.8 | 18.2 | 12231 | 11221 | 11221 | 11121 | 82 | 80 | 60 | 80 | 25.2_S91 |
3.3_S95 | AD-CAB_3003 | RC | 55 | tear | 3-3_S95_L001_R1_001.fastq.gz | NA | 56 | M | NA | NA | NA | Left | 179.00 | 85 | 26.52 | 1 | Never_smoker | No | Yes | NA | No | 2.9 | 72 | 90 | 4.3 | 5.2 | 5.4 | No | Intact | 50 | 50 | 100 | 38 | 38 | 44 | 48 | 29.5 | 27.3 | 9.1 | 0.0 | 11221 | 11121 | 11111 | 22222 | 80 | 70 | 80 | 60 | 3.3_S95 |
4.3_S96 | AD-CAB_3004 | RC | 56 | tear | 4-3_S96_L001_R1_001.fastq.gz | NA | 68 | M | NA | NA | NA | Right | 185.00 | 95 | 28.00 | 2 | Ever_smoker | No | Yes | Yes | No | 3.6 | 91 | 74 | 7.8 | 6.7 | 5.7 | No | Intact | 45 | 50 | 95 | 24 | 41 | 46 | 48 | NA | 18.2 | 13.6 | 0.0 | 11232 | 11121 | 11121 | 11111 | NA | 80 | 60 | 52 | 4.3_S96 |
7.3_S99 | AD-CAB_3007 | RC | 59 | tear | 7-3_S99_L001_R1_001.fastq.gz | NA | 63 | F | NA | NA | NA | Right | 163.00 | 57 | 21.50 | 1 | Ever_smoker | No | No | No | No | 2.9 | 53 | 90 | 29.0 | NA | 5.3 | No | Intact | 50 | 50 | 100 | 37 | 38 | 46 | 48 | 36.4 | 18.2 | 11.4 | 2.3 | 11122 | 11111 | 11111 | 11111 | 93 | 97 | 100 | 100 | 7.3_S99 |
8.3_S100 | AD-CAB_3008 | RC | 60 | tear | 8-3_S100_L001_R1_001.fastq.gz | NA | 70 | M | NA | NA | NA | Left | 167.00 | 71 | 25.50 | 2 | Never_smoker | No | Yes | Yes | No | 2.9 | 87 | 77 | 7.3 | 5.5 | 5.4 | No | Intact | NA | NA | NA | 24 | 25 | 47 | NA | 54.5 | 54.5 | 11.4 | NA | 22221 | 22221 | 11111 | NA | 90 | 90 | 92 | NA | 8.3_S100 |
9.3_S101 | AD-CAB_3009 | RC | 61 | tear | 9-3_S101_L001_R1_001.fastq.gz | NA | 68 | M | NA | NA | NA | Right | 182.00 | 83 | 25.10 | 2 | Ever_smoker | No | No | No | No | 2.9 | 79 | 88 | 7.5 | 5.8 | 5.8 | No | Intact | 50 | 50 | 100 | 35 | 41 | 43 | 46 | 52.3 | 11.4 | 4.5 | 2.3 | 11211 | 11121 | 11111 | 11111 | 85 | 96 | 90 | 90 | 9.3_S101 |
10.3_S102 | AD-CAB_3010 | RC | 62 | tear | 10-3_S102_L001_R1_001.fastq.gz | NA | 58 | M | NA | NA | NA | Left | 179.00 | 98 | 30.00 | 2 | Never_smoker | No | No | No | Yes | 2.9 | 82 | 90 | 5.6 | 4.9 | 5.1 | No | Intact | 45 | 17 | 62 | 21 | 45 | 43 | 44 | 45.5 | 4.5 | 11.4 | 20.5 | 11221 | 11111 | 11121 | 11221 | 70 | 70 | 75 | 85 | 10.3_S102 |
11.3_S103 | AD-CAB_3011 | RC | 63 | tear | 11-3_S103_L001_R1_001.fastq.gz | NA | 50 | M | NA | NA | NA | Right | 180.00 | 82 | 25.00 | 1 | Never_smoker | No | Yes | No | No | 2.9 | 99 | 76 | 6.7 | 5.7 | 6.0 | No | Intact | 35 | 18 | 53 | 18 | 38 | 44 | 46 | 61.4 | 31.8 | 6.8 | 20.5 | 11221 | 11222 | 11111 | 11121 | 75 | 83 | 75 | 78 | 11.3_S103 |
14.3_S106 | AD-CAB_3014 | RC | 66 | tear | 14-3_S106_L001_R1_001.fastq.gz | NA | 70 | M | NA | NA | NA | Left | 1.77 | 100 | 32.00 | 3 | Ever_smoker | No | Yes | Yes | No | 2.9 | 86 | 79 | 7.1 | 6.3 | 5.8 | Yes | Intact | 50 | 45 | 95 | 27 | 43 | 47 | 47 | 50.0 | 9.1 | 6.8 | 9.1 | 12221 | 11111 | 11111 | 11111 | 90 | 90 | 88 | 85 | 14.3_S106 |
15.3_S107 | AD-CAB_3015 | RC | 69 | tear | 15-3_S107_L001_R1_001.fastq.gz | NA | 66 | M | NA | NA | NA | Left | 175.00 | 95 | 31.00 | 3 | Never_smoker | No | Yes | Yes | No | 2.9 | 53 | 90 | 4.1 | 5.5 | 5.2 | Yes | Intact | 50 | 47 | 97 | 25 | NA | NA | 48 | 40.9 | NA | NA | 13.6 | 11121 | NA | NA | 11121 | 78 | NA | NA | 93 | 15.3_S107 |
18.3_S110 | AD-CAB_3018 | RC | 72 | tear | 18-3_S110_L001_R1_001.fastq.gz | NA | 72 | M | NA | NA | NA | Right | 170.00 | 85 | 29.00 | 2 | Ever_smoker | No | Yes | Yes | No | 3.2 | 82 | 82 | 6.4 | 5.5 | 5.5 | No | Intact | 50 | 50 | 100 | 36 | 37 | 48 | 48 | 31.8 | 13.6 | 9.1 | 0.0 | 11122 | 11112 | 11111 | 11111 | 90 | 82 | 92 | 90 | 18.3_S110 |
19.3_S111 | AD-CAB_3019 | RC | 73 | tear | 19-3_S111_L001_R1_001.fastq.gz | NA | 45 | F | NA | NA | NA | Right | 163.00 | 98 | 36.90 | 2 | Never_smoker | No | Yes | Yes | No | 4.3 | 70 | 57 | 4.6 | 4.7 | 5.7 | Yes | Intact | 50 | 35 | 85 | 32 | 28 | 45 | 47 | 36.4 | 38.6 | 18.2 | 13.6 | 11221 | 11221 | 11121 | 11121 | 50 | 58 | 45 | 34 | 19.3_S111 |
20.3_S112 | AD-CAB_3020 | RC | 67 | tear | 20-3_S112_L001_R1_001.fastq.gz | NA | 61 | M | NA | NA | NA | Right | 180.00 | 92 | 29.00 | 1 | Ever_smoker | No | No | No | No | 2.9 | 78 | 57 | 3.9 | 5.5 | 5.6 | No | Intact | 50 | 40 | 90 | 30 | 34 | 36 | 44 | 50.0 | 34.1 | 31.8 | 0.0 | 12321 | 12321 | 12211 | 12211 | 77 | 40 | 70 | 70 | 20.3_S112 |
23.3_S115 | AD-CAB_3023 | RC | 75 | tear | 23-3_S115_L001_R1_001.fastq.gz | NA | 58 | M | NA | NA | NA | Right | 179.00 | 81 | 25.00 | 2 | Ever_smoker | No | Yes | No | No | 2.9 | 75 | 57 | 5.7 | 5.4 | 5.7 | No | Intact | 50 | 40 | 90 | 42 | 43 | 48 | 48 | 15.9 | 15.9 | 0.0 | 2.3 | 11211 | 11121 | 11111 | 11111 | 85 | 85 | 90 | 85 | 23.3_S115 |
25.3_S117 | AD-CAB_3025 | RC | 77 | tear | 25-3_S117_L001_R1_001.fastq.gz | NA | 62 | F | NA | NA | NA | Left | 157.00 | 95 | 38.50 | 2 | Never_smoker | No | Yes | Yes | No | 12.0 | 72 | 57 | 6.6 | 6.2 | 5.7 | Yes | Intact | 45 | 43 | 88 | 26 | 36 | 38 | 41 | 59.1 | 29.5 | 31.8 | 18.2 | 12231 | 11221 | 11221 | 11121 | 82 | 80 | 60 | 80 | 25.3_S117 |
#de2
ss2 <- ss[ss$Tendon_integrity_2_years_post.op=="Torn",]
x2 <- x[,which(colnames(x) %in% ss2$data)]
ss2 %>% kbl(caption = "Torn tendon group") %>% kable_paper("hover", full_width = F)
Participant_ID | Case | Redcap_ID | Tissue | fastq | pvt.pub | Age | Sex | Primary_OA | Cuff_Arthropathy | Prosthesis | Affected_Side | Height_cm | Weight_kg | BMI | ASA | Smoking | Diabetes | Hypercholesterolaemia | Hypertension | Thyroid | CRP | Creat | eGFR | Urea | Fast_Glucose | hba1c | Metabolic_Syndrome | Tendon_integrity_2_years_post.op | ASES_2_years_post.op_Pain | ASES_2_years_post.op_ADL | ASES_2_years_post.op_Total | Oxford_Baseline | Oxford_3_month | Oxford_12_month | Oxford_24_month | QuickDASH_ | QuickDASH_3_month | QuickDASH_12_month | QuickDASH_24_month | EQ.5D.3L_Baseline | EQ.5D.3L_3_month | EQ.5D.3L_12_month | EQ.5D.3L_24_month | EQVAS_Baseline | EQVAS_3_month | EQVAS_12_month | EQVAS_24_month | data | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.2_S67 | AD-CAB_3001 | RC | 53 | tendon | 1-2_S67_L001_R1_001.fastq.gz | NA | 67 | M | NA | NA | NA | Left | 177.8 | 120 | 37.9 | 2 | Ever_smoker | No | Yes | Yes | No | 2.9 | 83 | 84 | 7.0 | 5.2 | 5.6 | Yes | Torn | NA | NA | NA | 25 | 41 | 46 | NA | 38.6 | 13.6 | 13.6 | NA | 11222 | 11123 | 21222 | NA | 90 | 50 | 60 | NA | 1.2_S67 |
2.2_S68 | AD-CAB_3002 | RC | 54 | tendon | 2-2_S68_L001_R1_001.fastq.gz | NA | 58 | M | NA | NA | NA | Right | 179.0 | 79 | 25.0 | 1 | Never_smoker | No | No | No | No | 0.7 | 70 | 90 | 6.9 | 5.4 | 5.3 | No | Torn | NA | NA | NA | 33 | NA | 48 | NA | 29.5 | NA | 0.0 | NA | 11111 | NA | 11111 | NA | 90 | NA | 90 | NA | 2.2_S68 |
5.2_S71 | AD-CAB_3005 | RC | 57 | tendon | 5-2_S71_L001_R1_001.fastq.gz | NA | 59 | F | NA | NA | NA | Right | NA | NA | NA | 1 | Never_smoker | No | No | No | No | 3.8 | 51 | 90 | 6.2 | NA | 5.2 | NA | Torn | 50 | 50 | 100 | 38 | 45 | NA | 48 | 25.0 | 4.5 | NA | 0.0 | 11121 | 11111 | NA | 11111 | 92 | 94 | 95 | NA | 5.2_S71 |
6.2_S72 | AD-CAB_3006 | RC | 58 | tendon | 6-2_S72_L001_R1_001.fastq.gz | NA | 65 | M | NA | NA | NA | Left | 172.0 | 78 | 26.0 | 1 | Never_smoker | No | No | No | No | 2.9 | 77 | 90 | 5.6 | 4.8 | 5.4 | No | Torn | NA | NA | NA | 35 | 31 | 37 | NA | 34.1 | 36.4 | 27.3 | NA | 12221 | 11221 | 11111 | NA | 82 | 40 | 80 | NA | 6.2_S72 |
16.2_S82 | AD-CAB_3016 | RC | 71 | tendon | 16-2_S82_L001_R1_001.fastq.gz | NA | 68 | M | NA | NA | NA | Left | 180.0 | 88 | 27.0 | 1 | Ever_smoker | Yes | No | Yes | No | 2.9 | 73 | 90 | 4.7 | 7.3 | 8.3 | No | Torn | 40 | 42 | 82 | 24 | 27 | 45 | 43 | 43.2 | 38.6 | 6.8 | 11.4 | 11122 | 11222 | 11112 | 11121 | 70 | 60 | 50 | 80 | 16.2_S82 |
17.2_S83 | AD-CAB_3017 | RC | 70 | tendon | 17-2_S83_L001_R1_001.fastq.gz | NA | 60 | M | NA | NA | NA | Left | 166.0 | 80 | 29.0 | 2 | Ever_smoker | No | No | No | No | 2.9 | 119 | 57 | 7.2 | NA | 5.7 | No | Torn | NA | NA | NA | 13 | 40 | NA | NA | 93.2 | 38.6 | NA | NA | 12221 | 21211 | NA | NA | 70 | 60 | NA | NA | 17.2_S83 |
21.2_S87 | AD-CAB_3021 | RC | 68 | tendon | 21-2_S87_L001_R1_001.fastq.gz | NA | 46 | M | NA | NA | NA | Right | 180.0 | 88 | 27.2 | 2 | Never_smoker | No | Yes | No | No | 2.9 | 77 | 57 | 5.9 | 5.9 | 5.3 | No | Torn | NA | NA | NA | 29 | 44 | 43 | NA | 45.5 | 20.5 | 11.4 | NA | NA | 11111 | 11121 | NA | NA | 80 | 65 | NA | 21.2_S87 |
1.3_S93 | AD-CAB_3001 | RC | 53 | tear | 1-3_S93_L001_R1_001.fastq.gz | NA | 67 | M | NA | NA | NA | Left | 177.8 | 120 | 37.9 | 2 | Ever_smoker | No | Yes | Yes | No | 2.9 | 83 | 84 | 7.0 | 5.2 | 5.6 | Yes | Torn | NA | NA | NA | 25 | 41 | 46 | NA | 38.6 | 13.6 | 13.6 | NA | 11222 | 11123 | 21222 | NA | 90 | 50 | 60 | NA | 1.3_S93 |
2.3_S94 | AD-CAB_3002 | RC | 54 | tear | 2-3_S94_L001_R1_001.fastq.gz | NA | 58 | M | NA | NA | NA | Right | 179.0 | 79 | 25.0 | 1 | Never_smoker | No | No | No | No | 0.7 | 70 | 90 | 6.9 | 5.4 | 5.3 | No | Torn | NA | NA | NA | 33 | NA | 48 | NA | 29.5 | NA | 0.0 | NA | 11111 | NA | 11111 | NA | 90 | NA | 90 | NA | 2.3_S94 |
5.3_S97 | AD-CAB_3005 | RC | 57 | tear | 5-3_S97_L001_R1_001.fastq.gz | NA | 59 | F | NA | NA | NA | Right | NA | NA | NA | 1 | Never_smoker | No | No | No | No | 3.8 | 51 | 90 | 6.2 | NA | 5.2 | NA | Torn | 50 | 50 | 100 | 38 | 45 | NA | 48 | 25.0 | 4.5 | NA | 0.0 | 11121 | 11111 | NA | 11111 | 92 | 94 | 95 | NA | 5.3_S97 |
6.3_S98 | AD-CAB_3006 | RC | 58 | tear | 6-3_S98_L001_R1_001.fastq.gz | NA | 65 | M | NA | NA | NA | Left | 172.0 | 78 | 26.0 | 1 | Never_smoker | No | No | No | No | 2.9 | 77 | 90 | 5.6 | 4.8 | 5.4 | No | Torn | NA | NA | NA | 35 | 31 | 37 | NA | 34.1 | 36.4 | 27.3 | NA | 12221 | 11221 | 11111 | NA | 82 | 40 | 80 | NA | 6.3_S98 |
16.3_S108 | AD-CAB_3016 | RC | 71 | tear | 16-3_S108_L001_R1_001.fastq.gz | NA | 68 | M | NA | NA | NA | Left | 180.0 | 88 | 27.0 | 1 | Ever_smoker | Yes | No | Yes | No | 2.9 | 73 | 90 | 4.7 | 7.3 | 8.3 | No | Torn | 40 | 42 | 82 | 24 | 27 | 45 | 43 | 43.2 | 38.6 | 6.8 | 11.4 | 11122 | 11222 | 11112 | 11121 | 70 | 60 | 50 | 80 | 16.3_S108 |
17.3_S109 | AD-CAB_3017 | RC | 70 | tear | 17-3_S109_L001_R1_001.fastq.gz | NA | 60 | M | NA | NA | NA | Left | 166.0 | 80 | 29.0 | 2 | Ever_smoker | No | No | No | No | 2.9 | 119 | 57 | 7.2 | NA | 5.7 | No | Torn | NA | NA | NA | 13 | 40 | NA | NA | 93.2 | 38.6 | NA | NA | 12221 | 21211 | NA | NA | 70 | 60 | NA | NA | 17.3_S109 |
21.3_S113 | AD-CAB_3021 | RC | 68 | tear | 21-3_S113_L001_R1_001.fastq.gz | NA | 46 | M | NA | NA | NA | Right | 180.0 | 88 | 27.2 | 2 | Never_smoker | No | Yes | No | No | 2.9 | 77 | 57 | 5.9 | 5.9 | 5.3 | No | Torn | NA | NA | NA | 29 | 44 | 43 | NA | 45.5 | 20.5 | 11.4 | NA | NA | 11111 | 11121 | NA | NA | 80 | 65 | NA | 21.3_S113 |
#de3
ss3 <- ss[ss$Tissue=="tendon",]
x3 <- x[,which(colnames(x) %in% ss3$data)]
ss3 %>% kbl(caption = "Tendon body samples") %>% kable_paper("hover", full_width = F)
Participant_ID | Case | Redcap_ID | Tissue | fastq | pvt.pub | Age | Sex | Primary_OA | Cuff_Arthropathy | Prosthesis | Affected_Side | Height_cm | Weight_kg | BMI | ASA | Smoking | Diabetes | Hypercholesterolaemia | Hypertension | Thyroid | CRP | Creat | eGFR | Urea | Fast_Glucose | hba1c | Metabolic_Syndrome | Tendon_integrity_2_years_post.op | ASES_2_years_post.op_Pain | ASES_2_years_post.op_ADL | ASES_2_years_post.op_Total | Oxford_Baseline | Oxford_3_month | Oxford_12_month | Oxford_24_month | QuickDASH_ | QuickDASH_3_month | QuickDASH_12_month | QuickDASH_24_month | EQ.5D.3L_Baseline | EQ.5D.3L_3_month | EQ.5D.3L_12_month | EQ.5D.3L_24_month | EQVAS_Baseline | EQVAS_3_month | EQVAS_12_month | EQVAS_24_month | data | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.2_S67 | AD-CAB_3001 | RC | 53 | tendon | 1-2_S67_L001_R1_001.fastq.gz | NA | 67 | M | NA | NA | NA | Left | 177.80 | 120 | 37.90 | 2 | Ever_smoker | No | Yes | Yes | No | 2.9 | 83 | 84 | 7.0 | 5.2 | 5.6 | Yes | Torn | NA | NA | NA | 25 | 41 | 46 | NA | 38.6 | 13.6 | 13.6 | NA | 11222 | 11123 | 21222 | NA | 90 | 50 | 60 | NA | 1.2_S67 |
2.2_S68 | AD-CAB_3002 | RC | 54 | tendon | 2-2_S68_L001_R1_001.fastq.gz | NA | 58 | M | NA | NA | NA | Right | 179.00 | 79 | 25.00 | 1 | Never_smoker | No | No | No | No | 0.7 | 70 | 90 | 6.9 | 5.4 | 5.3 | No | Torn | NA | NA | NA | 33 | NA | 48 | NA | 29.5 | NA | 0.0 | NA | 11111 | NA | 11111 | NA | 90 | NA | 90 | NA | 2.2_S68 |
3.2_S69 | AD-CAB_3003 | RC | 55 | tendon | 3-2_S69_L001_R1_001.fastq.gz | NA | 56 | M | NA | NA | NA | Left | 179.00 | 85 | 26.52 | 1 | Never_smoker | No | Yes | NA | No | 2.9 | 72 | 90 | 4.3 | 5.2 | 5.4 | No | Intact | 50 | 50 | 100 | 38 | 38 | 44 | 48 | 29.5 | 27.3 | 9.1 | 0.0 | 11221 | 11121 | 11111 | 22222 | 80 | 70 | 80 | 60 | 3.2_S69 |
4.2_S70 | AD-CAB_3004 | RC | 56 | tendon | 4-2_S70_L001_R1_001.fastq.gz | NA | 68 | M | NA | NA | NA | Right | 185.00 | 95 | 28.00 | 2 | Ever_smoker | No | Yes | Yes | No | 3.6 | 91 | 74 | 7.8 | 6.7 | 5.7 | No | Intact | 45 | 50 | 95 | 24 | 41 | 46 | 48 | NA | 18.2 | 13.6 | 0.0 | 11232 | 11121 | 11121 | 11111 | NA | 80 | 60 | 52 | 4.2_S70 |
5.2_S71 | AD-CAB_3005 | RC | 57 | tendon | 5-2_S71_L001_R1_001.fastq.gz | NA | 59 | F | NA | NA | NA | Right | NA | NA | NA | 1 | Never_smoker | No | No | No | No | 3.8 | 51 | 90 | 6.2 | NA | 5.2 | NA | Torn | 50 | 50 | 100 | 38 | 45 | NA | 48 | 25.0 | 4.5 | NA | 0.0 | 11121 | 11111 | NA | 11111 | 92 | 94 | 95 | NA | 5.2_S71 |
6.2_S72 | AD-CAB_3006 | RC | 58 | tendon | 6-2_S72_L001_R1_001.fastq.gz | NA | 65 | M | NA | NA | NA | Left | 172.00 | 78 | 26.00 | 1 | Never_smoker | No | No | No | No | 2.9 | 77 | 90 | 5.6 | 4.8 | 5.4 | No | Torn | NA | NA | NA | 35 | 31 | 37 | NA | 34.1 | 36.4 | 27.3 | NA | 12221 | 11221 | 11111 | NA | 82 | 40 | 80 | NA | 6.2_S72 |
7.2_S73 | AD-CAB_3007 | RC | 59 | tendon | 7-2_S73_L001_R1_001.fastq.gz | NA | 63 | F | NA | NA | NA | Right | 163.00 | 57 | 21.50 | 1 | Ever_smoker | No | No | No | No | 2.9 | 53 | 90 | 29.0 | NA | 5.3 | No | Intact | 50 | 50 | 100 | 37 | 38 | 46 | 48 | 36.4 | 18.2 | 11.4 | 2.3 | 11122 | 11111 | 11111 | 11111 | 93 | 97 | 100 | 100 | 7.2_S73 |
8.2_S74 | AD-CAB_3008 | RC | 60 | tendon | 8-2_S74_L001_R1_001.fastq.gz | NA | 70 | M | NA | NA | NA | Left | 167.00 | 71 | 25.50 | 2 | Never_smoker | No | Yes | Yes | No | 2.9 | 87 | 77 | 7.3 | 5.5 | 5.4 | No | Intact | NA | NA | NA | 24 | 25 | 47 | NA | 54.5 | 54.5 | 11.4 | NA | 22221 | 22221 | 11111 | NA | 90 | 90 | 92 | NA | 8.2_S74 |
9.2_S75 | AD-CAB_3009 | RC | 61 | tendon | 9-2_S75_L001_R1_001.fastq.gz | NA | 68 | M | NA | NA | NA | Right | 182.00 | 83 | 25.10 | 2 | Ever_smoker | No | No | No | No | 2.9 | 79 | 88 | 7.5 | 5.8 | 5.8 | No | Intact | 50 | 50 | 100 | 35 | 41 | 43 | 46 | 52.3 | 11.4 | 4.5 | 2.3 | 11211 | 11121 | 11111 | 11111 | 85 | 96 | 90 | 90 | 9.2_S75 |
10.2_S76 | AD-CAB_3010 | RC | 62 | tendon | 10-2_S76_L001_R1_001.fastq.gz | NA | 58 | M | NA | NA | NA | Left | 179.00 | 98 | 30.00 | 2 | Never_smoker | No | No | No | Yes | 2.9 | 82 | 90 | 5.6 | 4.9 | 5.1 | No | Intact | 45 | 17 | 62 | 21 | 45 | 43 | 44 | 45.5 | 4.5 | 11.4 | 20.5 | 11221 | 11111 | 11121 | 11221 | 70 | 70 | 75 | 85 | 10.2_S76 |
11.2_S77 | AD-CAB_3011 | RC | 63 | tendon | 11-2_S77_L001_R1_001.fastq.gz | NA | 50 | M | NA | NA | NA | Right | 180.00 | 82 | 25.00 | 1 | Never_smoker | No | Yes | No | No | 2.9 | 99 | 76 | 6.7 | 5.7 | 6.0 | No | Intact | 35 | 18 | 53 | 18 | 38 | 44 | 46 | 61.4 | 31.8 | 6.8 | 20.5 | 11221 | 11222 | 11111 | 11121 | 75 | 83 | 75 | 78 | 11.2_S77 |
14.2_S80 | AD-CAB_3014 | RC | 66 | tendon | 14-2_S80_L001_R1_001.fastq.gz | NA | 70 | M | NA | NA | NA | Left | 1.77 | 100 | 32.00 | 3 | Ever_smoker | No | Yes | Yes | No | 2.9 | 86 | 79 | 7.1 | 6.3 | 5.8 | Yes | Intact | 50 | 45 | 95 | 27 | 43 | 47 | 47 | 50.0 | 9.1 | 6.8 | 9.1 | 12221 | 11111 | 11111 | 11111 | 90 | 90 | 88 | 85 | 14.2_S80 |
15.2_S81 | AD-CAB_3015 | RC | 69 | tendon | 15-2_S81_L001_R1_001.fastq.gz | NA | 66 | M | NA | NA | NA | Left | 175.00 | 95 | 31.00 | 3 | Never_smoker | No | Yes | Yes | No | 2.9 | 53 | 90 | 4.1 | 5.5 | 5.2 | Yes | Intact | 50 | 47 | 97 | 25 | NA | NA | 48 | 40.9 | NA | NA | 13.6 | 11121 | NA | NA | 11121 | 78 | NA | NA | 93 | 15.2_S81 |
16.2_S82 | AD-CAB_3016 | RC | 71 | tendon | 16-2_S82_L001_R1_001.fastq.gz | NA | 68 | M | NA | NA | NA | Left | 180.00 | 88 | 27.00 | 1 | Ever_smoker | Yes | No | Yes | No | 2.9 | 73 | 90 | 4.7 | 7.3 | 8.3 | No | Torn | 40 | 42 | 82 | 24 | 27 | 45 | 43 | 43.2 | 38.6 | 6.8 | 11.4 | 11122 | 11222 | 11112 | 11121 | 70 | 60 | 50 | 80 | 16.2_S82 |
17.2_S83 | AD-CAB_3017 | RC | 70 | tendon | 17-2_S83_L001_R1_001.fastq.gz | NA | 60 | M | NA | NA | NA | Left | 166.00 | 80 | 29.00 | 2 | Ever_smoker | No | No | No | No | 2.9 | 119 | 57 | 7.2 | NA | 5.7 | No | Torn | NA | NA | NA | 13 | 40 | NA | NA | 93.2 | 38.6 | NA | NA | 12221 | 21211 | NA | NA | 70 | 60 | NA | NA | 17.2_S83 |
18.2_S84 | AD-CAB_3018 | RC | 72 | tendon | 18-2_S84_L001_R1_001.fastq.gz | NA | 72 | M | NA | NA | NA | Right | 170.00 | 85 | 29.00 | 2 | Ever_smoker | No | Yes | Yes | No | 3.2 | 82 | 82 | 6.4 | 5.5 | 5.5 | No | Intact | 50 | 50 | 100 | 36 | 37 | 48 | 48 | 31.8 | 13.6 | 9.1 | 0.0 | 11122 | 11112 | 11111 | 11111 | 90 | 82 | 92 | 90 | 18.2_S84 |
19.2_S85 | AD-CAB_3019 | RC | 73 | tendon | 19-2_S85_L001_R1_001.fastq.gz | NA | 45 | F | NA | NA | NA | Right | 163.00 | 98 | 36.90 | 2 | Never_smoker | No | Yes | Yes | No | 4.3 | 70 | 57 | 4.6 | 4.7 | 5.7 | Yes | Intact | 50 | 35 | 85 | 32 | 28 | 45 | 47 | 36.4 | 38.6 | 18.2 | 13.6 | 11221 | 11221 | 11121 | 11121 | 50 | 58 | 45 | 34 | 19.2_S85 |
20.2_S86 | AD-CAB_3020 | RC | 67 | tendon | 20-2_S86_L001_R1_001.fastq.gz | NA | 61 | M | NA | NA | NA | Right | 180.00 | 92 | 29.00 | 1 | Ever_smoker | No | No | No | No | 2.9 | 78 | 57 | 3.9 | 5.5 | 5.6 | No | Intact | 50 | 40 | 90 | 30 | 34 | 36 | 44 | 50.0 | 34.1 | 31.8 | 0.0 | 12321 | 12321 | 12211 | 12211 | 77 | 40 | 70 | 70 | 20.2_S86 |
21.2_S87 | AD-CAB_3021 | RC | 68 | tendon | 21-2_S87_L001_R1_001.fastq.gz | NA | 46 | M | NA | NA | NA | Right | 180.00 | 88 | 27.20 | 2 | Never_smoker | No | Yes | No | No | 2.9 | 77 | 57 | 5.9 | 5.9 | 5.3 | No | Torn | NA | NA | NA | 29 | 44 | 43 | NA | 45.5 | 20.5 | 11.4 | NA | NA | 11111 | 11121 | NA | NA | 80 | 65 | NA | 21.2_S87 |
23.2_S89 | AD-CAB_3023 | RC | 75 | tendon | 23-2_S89_L001_R1_001.fastq.gz | NA | 58 | M | NA | NA | NA | Right | 179.00 | 81 | 25.00 | 2 | Ever_smoker | No | Yes | No | No | 2.9 | 75 | 57 | 5.7 | 5.4 | 5.7 | No | Intact | 50 | 40 | 90 | 42 | 43 | 48 | 48 | 15.9 | 15.9 | 0.0 | 2.3 | 11211 | 11121 | 11111 | 11111 | 85 | 85 | 90 | 85 | 23.2_S89 |
25.2_S91 | AD-CAB_3025 | RC | 77 | tendon | 25-2_S91_L001_R1_001.fastq.gz | NA | 62 | F | NA | NA | NA | Left | 157.00 | 95 | 38.50 | 2 | Never_smoker | No | Yes | Yes | No | 12.0 | 72 | 57 | 6.6 | 6.2 | 5.7 | Yes | Intact | 45 | 43 | 88 | 26 | 36 | 38 | 41 | 59.1 | 29.5 | 31.8 | 18.2 | 12231 | 11221 | 11221 | 11121 | 82 | 80 | 60 | 80 | 25.2_S91 |
#de4
ss4 <- ss[ss$Tissue=="tear",]
x4 <- x[,which(colnames(x) %in% ss4$data)]
ss4 %>% kbl(caption = "Tear edge samples") %>% kable_paper("hover", full_width = F)
Participant_ID | Case | Redcap_ID | Tissue | fastq | pvt.pub | Age | Sex | Primary_OA | Cuff_Arthropathy | Prosthesis | Affected_Side | Height_cm | Weight_kg | BMI | ASA | Smoking | Diabetes | Hypercholesterolaemia | Hypertension | Thyroid | CRP | Creat | eGFR | Urea | Fast_Glucose | hba1c | Metabolic_Syndrome | Tendon_integrity_2_years_post.op | ASES_2_years_post.op_Pain | ASES_2_years_post.op_ADL | ASES_2_years_post.op_Total | Oxford_Baseline | Oxford_3_month | Oxford_12_month | Oxford_24_month | QuickDASH_ | QuickDASH_3_month | QuickDASH_12_month | QuickDASH_24_month | EQ.5D.3L_Baseline | EQ.5D.3L_3_month | EQ.5D.3L_12_month | EQ.5D.3L_24_month | EQVAS_Baseline | EQVAS_3_month | EQVAS_12_month | EQVAS_24_month | data | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.3_S93 | AD-CAB_3001 | RC | 53 | tear | 1-3_S93_L001_R1_001.fastq.gz | NA | 67 | M | NA | NA | NA | Left | 177.80 | 120 | 37.90 | 2 | Ever_smoker | No | Yes | Yes | No | 2.9 | 83 | 84 | 7.0 | 5.2 | 5.6 | Yes | Torn | NA | NA | NA | 25 | 41 | 46 | NA | 38.6 | 13.6 | 13.6 | NA | 11222 | 11123 | 21222 | NA | 90 | 50 | 60 | NA | 1.3_S93 |
2.3_S94 | AD-CAB_3002 | RC | 54 | tear | 2-3_S94_L001_R1_001.fastq.gz | NA | 58 | M | NA | NA | NA | Right | 179.00 | 79 | 25.00 | 1 | Never_smoker | No | No | No | No | 0.7 | 70 | 90 | 6.9 | 5.4 | 5.3 | No | Torn | NA | NA | NA | 33 | NA | 48 | NA | 29.5 | NA | 0.0 | NA | 11111 | NA | 11111 | NA | 90 | NA | 90 | NA | 2.3_S94 |
3.3_S95 | AD-CAB_3003 | RC | 55 | tear | 3-3_S95_L001_R1_001.fastq.gz | NA | 56 | M | NA | NA | NA | Left | 179.00 | 85 | 26.52 | 1 | Never_smoker | No | Yes | NA | No | 2.9 | 72 | 90 | 4.3 | 5.2 | 5.4 | No | Intact | 50 | 50 | 100 | 38 | 38 | 44 | 48 | 29.5 | 27.3 | 9.1 | 0.0 | 11221 | 11121 | 11111 | 22222 | 80 | 70 | 80 | 60 | 3.3_S95 |
4.3_S96 | AD-CAB_3004 | RC | 56 | tear | 4-3_S96_L001_R1_001.fastq.gz | NA | 68 | M | NA | NA | NA | Right | 185.00 | 95 | 28.00 | 2 | Ever_smoker | No | Yes | Yes | No | 3.6 | 91 | 74 | 7.8 | 6.7 | 5.7 | No | Intact | 45 | 50 | 95 | 24 | 41 | 46 | 48 | NA | 18.2 | 13.6 | 0.0 | 11232 | 11121 | 11121 | 11111 | NA | 80 | 60 | 52 | 4.3_S96 |
5.3_S97 | AD-CAB_3005 | RC | 57 | tear | 5-3_S97_L001_R1_001.fastq.gz | NA | 59 | F | NA | NA | NA | Right | NA | NA | NA | 1 | Never_smoker | No | No | No | No | 3.8 | 51 | 90 | 6.2 | NA | 5.2 | NA | Torn | 50 | 50 | 100 | 38 | 45 | NA | 48 | 25.0 | 4.5 | NA | 0.0 | 11121 | 11111 | NA | 11111 | 92 | 94 | 95 | NA | 5.3_S97 |
6.3_S98 | AD-CAB_3006 | RC | 58 | tear | 6-3_S98_L001_R1_001.fastq.gz | NA | 65 | M | NA | NA | NA | Left | 172.00 | 78 | 26.00 | 1 | Never_smoker | No | No | No | No | 2.9 | 77 | 90 | 5.6 | 4.8 | 5.4 | No | Torn | NA | NA | NA | 35 | 31 | 37 | NA | 34.1 | 36.4 | 27.3 | NA | 12221 | 11221 | 11111 | NA | 82 | 40 | 80 | NA | 6.3_S98 |
7.3_S99 | AD-CAB_3007 | RC | 59 | tear | 7-3_S99_L001_R1_001.fastq.gz | NA | 63 | F | NA | NA | NA | Right | 163.00 | 57 | 21.50 | 1 | Ever_smoker | No | No | No | No | 2.9 | 53 | 90 | 29.0 | NA | 5.3 | No | Intact | 50 | 50 | 100 | 37 | 38 | 46 | 48 | 36.4 | 18.2 | 11.4 | 2.3 | 11122 | 11111 | 11111 | 11111 | 93 | 97 | 100 | 100 | 7.3_S99 |
8.3_S100 | AD-CAB_3008 | RC | 60 | tear | 8-3_S100_L001_R1_001.fastq.gz | NA | 70 | M | NA | NA | NA | Left | 167.00 | 71 | 25.50 | 2 | Never_smoker | No | Yes | Yes | No | 2.9 | 87 | 77 | 7.3 | 5.5 | 5.4 | No | Intact | NA | NA | NA | 24 | 25 | 47 | NA | 54.5 | 54.5 | 11.4 | NA | 22221 | 22221 | 11111 | NA | 90 | 90 | 92 | NA | 8.3_S100 |
9.3_S101 | AD-CAB_3009 | RC | 61 | tear | 9-3_S101_L001_R1_001.fastq.gz | NA | 68 | M | NA | NA | NA | Right | 182.00 | 83 | 25.10 | 2 | Ever_smoker | No | No | No | No | 2.9 | 79 | 88 | 7.5 | 5.8 | 5.8 | No | Intact | 50 | 50 | 100 | 35 | 41 | 43 | 46 | 52.3 | 11.4 | 4.5 | 2.3 | 11211 | 11121 | 11111 | 11111 | 85 | 96 | 90 | 90 | 9.3_S101 |
10.3_S102 | AD-CAB_3010 | RC | 62 | tear | 10-3_S102_L001_R1_001.fastq.gz | NA | 58 | M | NA | NA | NA | Left | 179.00 | 98 | 30.00 | 2 | Never_smoker | No | No | No | Yes | 2.9 | 82 | 90 | 5.6 | 4.9 | 5.1 | No | Intact | 45 | 17 | 62 | 21 | 45 | 43 | 44 | 45.5 | 4.5 | 11.4 | 20.5 | 11221 | 11111 | 11121 | 11221 | 70 | 70 | 75 | 85 | 10.3_S102 |
11.3_S103 | AD-CAB_3011 | RC | 63 | tear | 11-3_S103_L001_R1_001.fastq.gz | NA | 50 | M | NA | NA | NA | Right | 180.00 | 82 | 25.00 | 1 | Never_smoker | No | Yes | No | No | 2.9 | 99 | 76 | 6.7 | 5.7 | 6.0 | No | Intact | 35 | 18 | 53 | 18 | 38 | 44 | 46 | 61.4 | 31.8 | 6.8 | 20.5 | 11221 | 11222 | 11111 | 11121 | 75 | 83 | 75 | 78 | 11.3_S103 |
14.3_S106 | AD-CAB_3014 | RC | 66 | tear | 14-3_S106_L001_R1_001.fastq.gz | NA | 70 | M | NA | NA | NA | Left | 1.77 | 100 | 32.00 | 3 | Ever_smoker | No | Yes | Yes | No | 2.9 | 86 | 79 | 7.1 | 6.3 | 5.8 | Yes | Intact | 50 | 45 | 95 | 27 | 43 | 47 | 47 | 50.0 | 9.1 | 6.8 | 9.1 | 12221 | 11111 | 11111 | 11111 | 90 | 90 | 88 | 85 | 14.3_S106 |
15.3_S107 | AD-CAB_3015 | RC | 69 | tear | 15-3_S107_L001_R1_001.fastq.gz | NA | 66 | M | NA | NA | NA | Left | 175.00 | 95 | 31.00 | 3 | Never_smoker | No | Yes | Yes | No | 2.9 | 53 | 90 | 4.1 | 5.5 | 5.2 | Yes | Intact | 50 | 47 | 97 | 25 | NA | NA | 48 | 40.9 | NA | NA | 13.6 | 11121 | NA | NA | 11121 | 78 | NA | NA | 93 | 15.3_S107 |
16.3_S108 | AD-CAB_3016 | RC | 71 | tear | 16-3_S108_L001_R1_001.fastq.gz | NA | 68 | M | NA | NA | NA | Left | 180.00 | 88 | 27.00 | 1 | Ever_smoker | Yes | No | Yes | No | 2.9 | 73 | 90 | 4.7 | 7.3 | 8.3 | No | Torn | 40 | 42 | 82 | 24 | 27 | 45 | 43 | 43.2 | 38.6 | 6.8 | 11.4 | 11122 | 11222 | 11112 | 11121 | 70 | 60 | 50 | 80 | 16.3_S108 |
17.3_S109 | AD-CAB_3017 | RC | 70 | tear | 17-3_S109_L001_R1_001.fastq.gz | NA | 60 | M | NA | NA | NA | Left | 166.00 | 80 | 29.00 | 2 | Ever_smoker | No | No | No | No | 2.9 | 119 | 57 | 7.2 | NA | 5.7 | No | Torn | NA | NA | NA | 13 | 40 | NA | NA | 93.2 | 38.6 | NA | NA | 12221 | 21211 | NA | NA | 70 | 60 | NA | NA | 17.3_S109 |
18.3_S110 | AD-CAB_3018 | RC | 72 | tear | 18-3_S110_L001_R1_001.fastq.gz | NA | 72 | M | NA | NA | NA | Right | 170.00 | 85 | 29.00 | 2 | Ever_smoker | No | Yes | Yes | No | 3.2 | 82 | 82 | 6.4 | 5.5 | 5.5 | No | Intact | 50 | 50 | 100 | 36 | 37 | 48 | 48 | 31.8 | 13.6 | 9.1 | 0.0 | 11122 | 11112 | 11111 | 11111 | 90 | 82 | 92 | 90 | 18.3_S110 |
19.3_S111 | AD-CAB_3019 | RC | 73 | tear | 19-3_S111_L001_R1_001.fastq.gz | NA | 45 | F | NA | NA | NA | Right | 163.00 | 98 | 36.90 | 2 | Never_smoker | No | Yes | Yes | No | 4.3 | 70 | 57 | 4.6 | 4.7 | 5.7 | Yes | Intact | 50 | 35 | 85 | 32 | 28 | 45 | 47 | 36.4 | 38.6 | 18.2 | 13.6 | 11221 | 11221 | 11121 | 11121 | 50 | 58 | 45 | 34 | 19.3_S111 |
20.3_S112 | AD-CAB_3020 | RC | 67 | tear | 20-3_S112_L001_R1_001.fastq.gz | NA | 61 | M | NA | NA | NA | Right | 180.00 | 92 | 29.00 | 1 | Ever_smoker | No | No | No | No | 2.9 | 78 | 57 | 3.9 | 5.5 | 5.6 | No | Intact | 50 | 40 | 90 | 30 | 34 | 36 | 44 | 50.0 | 34.1 | 31.8 | 0.0 | 12321 | 12321 | 12211 | 12211 | 77 | 40 | 70 | 70 | 20.3_S112 |
21.3_S113 | AD-CAB_3021 | RC | 68 | tear | 21-3_S113_L001_R1_001.fastq.gz | NA | 46 | M | NA | NA | NA | Right | 180.00 | 88 | 27.20 | 2 | Never_smoker | No | Yes | No | No | 2.9 | 77 | 57 | 5.9 | 5.9 | 5.3 | No | Torn | NA | NA | NA | 29 | 44 | 43 | NA | 45.5 | 20.5 | 11.4 | NA | NA | 11111 | 11121 | NA | NA | 80 | 65 | NA | 21.3_S113 |
23.3_S115 | AD-CAB_3023 | RC | 75 | tear | 23-3_S115_L001_R1_001.fastq.gz | NA | 58 | M | NA | NA | NA | Right | 179.00 | 81 | 25.00 | 2 | Ever_smoker | No | Yes | No | No | 2.9 | 75 | 57 | 5.7 | 5.4 | 5.7 | No | Intact | 50 | 40 | 90 | 42 | 43 | 48 | 48 | 15.9 | 15.9 | 0.0 | 2.3 | 11211 | 11121 | 11111 | 11111 | 85 | 85 | 90 | 85 | 23.3_S115 |
25.3_S117 | AD-CAB_3025 | RC | 77 | tear | 25-3_S117_L001_R1_001.fastq.gz | NA | 62 | F | NA | NA | NA | Left | 157.00 | 95 | 38.50 | 2 | Never_smoker | No | Yes | Yes | No | 12.0 | 72 | 57 | 6.6 | 6.2 | 5.7 | Yes | Intact | 45 | 43 | 88 | 26 | 36 | 38 | 41 | 59.1 | 29.5 | 31.8 | 18.2 | 12231 | 11221 | 11221 | 11121 | 82 | 80 | 60 | 80 | 25.3_S117 |
First to look at the number of reads per data set.
par(mar=c(5,8,3,1))
barplot(colSums(x1),horiz=TRUE,las=1,xlab="Intact tendon group reads")
abline(v=4e6,col="red",lty=2)
barplot(colSums(x2),horiz=TRUE,las=1,xlab="Torn tendon group reads")
abline(v=4e6,col="red",lty=2)
barplot(colSums(x3),horiz=TRUE,las=1,xlab="Tendon body reads")
abline(v=4e6,col="red",lty=2)
barplot(colSums(x4),horiz=TRUE,las=1,xlab="Tear edge reads")
abline(v=4e6,col="red",lty=2)
x1 <- x1[,colSums(x1)>4e6]
x2 <- x2[,colSums(x2)>4e6]
x3 <- x3[,colSums(x3)>4e6]
x4 <- x4[,colSums(x4)>4e6]
ss1 <- ss1[which(ss1$data %in% colnames(x1)),]
ss2 <- ss2[which(ss2$data %in% colnames(x2)),]
ss3 <- ss3[which(ss3$data %in% colnames(x3)),]
ss4 <- ss4[which(ss4$data %in% colnames(x4)),]
ss1 <- ss1[order(rownames(ss1)),]
x1 <- x1[,order(colnames(x1))]
ss2 <- ss2[order(rownames(ss2)),]
x2 <- x2[,order(colnames(x2))]
ss3 <- ss3[order(rownames(ss3)),]
x3 <- x3[,order(colnames(x3))]
ss4 <- ss4[order(rownames(ss4)),]
x4 <- x4[,order(colnames(x4))]
rownames(ss1) == colnames(x1)
## [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [16] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
rownames(ss2) == colnames(x2)
## [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
rownames(ss3) == colnames(x3)
## [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [16] TRUE TRUE TRUE TRUE
rownames(ss4) == colnames(x4)
## [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [16] TRUE TRUE TRUE TRUE
Multidimensional scaling plot to show the variation between all samples, very similar to PCA.
xx <- cbind(x3,x4)
ssx <- rbind(ss3,ss4)
mds <- cmdscale(dist(t(xx)))
plot(mds, xlab="Coordinate 1", ylab="Coordinate 2",
type = "p",bty="n",pch=19, cex=4 ,col="gray")
text(mds, labels=rownames(mds) )
cols <- as.numeric(as.factor(ssx$Tendon_integrity_2_years_post.op))+1 #red=intact,green=torn
shapes <- as.numeric(as.factor(ssx$Tissue))+14
plot(mds, xlab="Coordinate 1", ylab="Coordinate 2",
type = "p",bty="n",pch=shapes, cex=2 ,col=cols)
text(mds, labels=rownames(mds) )
# Add a legend
legend("top",
legend = c("tear intact", "tendon intact", "tear torn", "tendon torn"),
col= c("red","red","green","green"),
pch = c(15,16,15,16),
pt.cex = 2,
cex = 1.2 )
genesets <- gmt_import("ReactomePathways_2023-09-01.gmt")
# gene table
gt <- as.data.frame(rownames(x))
#gt$gene <- sapply(strsplit(gt[,1]," "),"[[",2)
gt[,1] <- sub("@",".",sub("\\."," ",(sub("\\.","@",gt[,1]))))
gt$gene <- sapply(strsplit(gt[,1]," "),"[[",2)
gt[,1] <- rownames(x)
colnames(x1) == rownames(ss1)
## [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [16] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
x1f <- x1[which(rowMeans(x1)>10),]
dim(x1)
## [1] 60651 26
dim(x1f)
## [1] 16573 26
ss1$tissue <- factor(ss1$Tissue,levels=c("tendon","tear"))
ss1$redcap <- as.character(ss1$Redcap_ID,ordered=FALSE) # unfortunately not possible to correct for patient of origin.
dds <- DESeqDataSetFromMatrix(countData = x1f , colData = ss1, design = ~ Age + Sex + tissue )
## converting counts to integer mode
## Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in
## design formula are characters, converting to factors
## the design formula contains one or more numeric variables with integer values,
## specifying a model with increasing fold change for higher values.
## did you mean for this to be a factor? if so, first convert
## this variable to a factor using the factor() function
## the design formula contains one or more numeric variables that have mean or
## standard deviation larger than 5 (an arbitrary threshold to trigger this message).
## Including numeric variables with large mean can induce collinearity with the intercept.
## Users should center and scale numeric variables in the design to improve GLM convergence.
res <- DESeq(dds)
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
z <- results(res)
vsd <- vst(dds, blind=FALSE)
zz <- cbind(as.data.frame(z),assay(vsd))
dge <- as.data.frame(zz[order(zz$pvalue),])
head(dge,20) %>%
kbl(caption = "Top gene expression differences between tendon (ctrl) and tear (case) of intact tissues") %>%
kable_paper("hover", full_width = F)
baseMean | log2FoldChange | lfcSE | stat | pvalue | padj | 10.2_S76 | 10.3_S102 | 11.3_S103 | 14.2_S80 | 14.3_S106 | 15.2_S81 | 15.3_S107 | 18.2_S84 | 18.3_S110 | 19.2_S85 | 19.3_S111 | 20.2_S86 | 20.3_S112 | 23.2_S89 | 23.3_S115 | 25.2_S91 | 3.2_S69 | 3.3_S95 | 4.2_S70 | 4.3_S96 | 7.2_S73 | 7.3_S99 | 8.2_S74 | 8.3_S100 | 9.2_S75 | 9.3_S101 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ENSG00000183091.20.NEB | 13657.7361 | -9.475428 | 0.9227078 | -10.269153 | 0 | 0 | 6.353477 | 5.839636 | 5.004771 | 12.278959 | 4.242025 | 10.039295 | 5.035579 | 6.803017 | 4.644989 | 16.62250 | 5.501492 | 5.328767 | 4.830237 | 16.10258 | 5.549527 | 6.814874 | 16.77936 | 4.993240 | 7.533251 | 4.649284 | 5.733830 | 6.768170 | 15.95547 | 3.796932 | 9.884009 | 5.776340 |
ENSG00000125414.19.MYH2 | 13405.4771 | -11.379104 | 1.2336425 | -9.223988 | 0 | 0 | 3.579296 | 5.602947 | 3.374098 | 12.696551 | 2.402798 | 12.475248 | 3.676300 | 8.247780 | 4.201051 | 16.26222 | 3.257371 | 3.830172 | 2.967203 | 15.59144 | 4.306145 | 8.121821 | 16.62435 | 2.402798 | 4.025040 | 2.402798 | 4.366180 | 8.236892 | 16.67722 | 3.228088 | 10.589621 | 2.916621 |
ENSG00000214872.8.SMTNL1 | 645.9268 | -7.849999 | 0.8692640 | -9.030628 | 0 | 0 | 4.346995 | 3.661730 | 4.319108 | 6.922830 | 3.456243 | 5.992967 | 3.514157 | 4.491470 | 3.642287 | 12.36789 | 3.594889 | 3.061752 | 2.967203 | 11.69789 | 4.256090 | 3.574614 | 11.92321 | 3.705787 | 4.493695 | 3.453480 | 4.303668 | 4.229608 | 11.96570 | 3.228088 | 6.248074 | 3.414995 |
ENSG00000248746.6.ACTN3 | 856.1159 | -9.658681 | 1.0824791 | -8.922742 | 0 | 0 | 3.245903 | 3.389835 | 4.182927 | 10.513053 | 3.269095 | 5.872795 | 3.317428 | 3.788352 | 2.402798 | 12.95766 | 3.442176 | 3.326941 | 2.402798 | 11.84239 | 3.969240 | 3.000658 | 12.52041 | 3.243242 | 6.067308 | 2.402798 | 2.965404 | 3.015252 | 11.62193 | 2.402798 | 5.898464 | 3.283727 |
ENSG00000163126.15.ANKRD23 | 2844.8682 | -7.377102 | 0.8339746 | -8.845715 | 0 | 0 | 4.956198 | 4.529208 | 5.281521 | 10.275355 | 4.820276 | 7.452137 | 5.305138 | 5.174880 | 5.465236 | 14.60713 | 4.568389 | 5.446665 | 4.371707 | 13.87089 | 5.697412 | 5.880867 | 14.09786 | 5.076633 | 5.632072 | 4.761920 | 5.164282 | 5.985143 | 13.81208 | 4.081205 | 7.954863 | 5.360366 |
ENSG00000164309.15.CMYA5 | 5110.9744 | -6.894549 | 0.7988693 | -8.630384 | 0 | 0 | 6.636348 | 6.133897 | 5.589753 | 11.006170 | 5.101029 | 9.705686 | 5.725240 | 6.819959 | 6.959593 | 15.26670 | 6.712524 | 6.318777 | 4.694398 | 14.46122 | 6.784913 | 7.446223 | 15.26851 | 6.132839 | 7.341005 | 5.832437 | 5.921527 | 7.109321 | 14.70139 | 4.561838 | 8.960604 | 6.933152 |
ENSG00000173641.18.HSPB7 | 1566.0350 | -6.561147 | 0.7815509 | -8.395034 | 0 | 0 | 4.815775 | 4.737931 | 5.943931 | 9.453523 | 4.320721 | 7.661171 | 4.334767 | 7.503921 | 4.513370 | 13.07901 | 4.136097 | 6.417201 | 4.488425 | 12.98875 | 6.879994 | 6.691404 | 13.30924 | 4.596238 | 5.703048 | 4.390036 | 5.940929 | 5.690275 | 13.54240 | 6.362034 | 7.564130 | 4.323863 |
ENSG00000164122.9.ASB5 | 402.6146 | -8.895785 | 1.0740731 | -8.282290 | 0 | 0 | 3.003142 | 2.979987 | 3.200716 | 7.623332 | 2.402798 | 4.344425 | 3.514157 | 3.788352 | 3.036669 | 12.25419 | 3.726875 | 3.061752 | 2.402798 | 10.68651 | 3.097302 | 3.242462 | 10.89687 | 2.402798 | 3.514469 | 3.018228 | 3.631351 | 3.262673 | 10.82238 | 2.990288 | 5.236594 | 2.916621 |
ENSG00000154358.23.OBSCN | 4076.3400 | -6.277968 | 0.7581847 | -8.280262 | 0 | 0 | 5.796891 | 6.004100 | 6.654357 | 10.626725 | 6.303581 | 8.781143 | 5.869028 | 7.822023 | 6.621622 | 15.02425 | 6.801899 | 6.436099 | 5.948783 | 14.13468 | 6.535001 | 6.556303 | 15.09230 | 5.927943 | 6.793443 | 6.433955 | 6.412422 | 7.149254 | 13.94461 | 5.644660 | 8.980641 | 5.683286 |
ENSG00000140986.8.RPL3L | 819.5918 | -8.079442 | 0.9804515 | -8.240532 | 0 | 0 | 4.346995 | 3.773880 | 3.642101 | 8.636915 | 3.019892 | 6.587514 | 4.493168 | 4.941270 | 3.778847 | 12.63360 | 4.136097 | 3.326941 | 3.368493 | 11.77585 | 3.673230 | 3.820070 | 12.70770 | 2.402798 | 4.025040 | 3.453480 | 3.631351 | 4.229608 | 12.00814 | 2.402798 | 6.732035 | 3.630668 |
ENSG00000112183.15.RBM24 | 427.0572 | -6.509227 | 0.7926673 | -8.211802 | 0 | 0 | 3.709761 | 4.054277 | 3.944622 | 8.142925 | 3.019892 | 5.253024 | 4.565606 | 5.374631 | 4.201051 | 11.84991 | 4.440006 | 4.067517 | 3.844831 | 10.95243 | 5.008824 | 5.153207 | 11.08341 | 3.575675 | 4.493695 | 3.453480 | 5.059943 | 4.229608 | 11.42637 | 2.990288 | 5.606079 | 4.093698 |
ENSG00000072954.7.TMEM38A | 558.8802 | -6.327064 | 0.7715832 | -8.200106 | 0 | 0 | 4.197081 | 3.968298 | 4.382000 | 7.307271 | 4.067618 | 5.768748 | 3.816101 | 5.003512 | 4.009117 | 12.06416 | 4.984724 | 5.057925 | 3.844831 | 11.43763 | 5.065183 | 4.267384 | 12.17671 | 3.575675 | 5.108688 | 4.390036 | 4.482660 | 4.307898 | 11.21873 | 2.990288 | 6.466711 | 4.472301 |
ENSG00000104369.5.JPH1 | 331.6083 | -7.319780 | 0.8959116 | -8.170204 | 0 | 0 | 4.274299 | 2.402798 | 3.517710 | 7.903766 | 2.402798 | 5.400793 | 3.939906 | 4.298983 | 3.642287 | 11.21941 | 4.219341 | 3.061752 | 3.196057 | 10.54606 | 4.306145 | 3.704622 | 11.19856 | 3.001221 | 3.940320 | 3.266792 | 3.931643 | 3.448539 | 11.00862 | 3.228088 | 5.174805 | 3.529009 |
ENSG00000160678.12.S100A1 | 453.2676 | -5.571715 | 0.6830624 | -8.156964 | 0 | 0 | 4.274299 | 4.584577 | 4.382000 | 7.370139 | 4.767255 | 7.136680 | 4.761637 | 7.277654 | 4.513370 | 11.70575 | 4.297294 | 6.739520 | 4.099519 | 11.29838 | 5.008824 | 4.705245 | 11.59436 | 4.759198 | 4.959646 | 4.589152 | 4.303668 | 4.697394 | 11.00325 | 4.081205 | 6.075657 | 4.093698 |
ENSG00000185739.13.SRL | 796.6372 | -6.957381 | 0.8548156 | -8.139043 | 0 | 0 | 3.825602 | 3.968298 | 3.374098 | 8.438711 | 3.019892 | 5.872795 | 4.334767 | 5.909826 | 3.036669 | 12.64168 | 4.740048 | 3.525540 | 3.511348 | 11.72237 | 6.195492 | 5.577781 | 12.59817 | 3.425213 | 5.108688 | 3.859118 | 5.409288 | 4.952188 | 11.96791 | 2.990288 | 6.721464 | 4.093698 |
ENSG00000164708.6.PGAM2 | 941.9428 | -7.835474 | 0.9676494 | -8.097431 | 0 | 0 | 4.026106 | 3.213800 | 3.374098 | 8.503187 | 2.402798 | 6.460414 | 3.054860 | 6.391347 | 3.778847 | 12.76107 | 4.628125 | 6.025763 | 3.196057 | 11.96509 | 4.790873 | 5.227556 | 12.88297 | 2.402798 | 5.336079 | 4.316124 | 3.365487 | 5.717331 | 12.34087 | 3.407010 | 6.955882 | 4.214179 |
ENSG00000116748.21.AMPD1 | 610.2067 | -10.976434 | 1.3651242 | -8.040612 | 0 | 0 | 3.709761 | 2.402798 | 2.970559 | 8.690198 | 2.402798 | 5.534424 | 2.402798 | 3.938570 | 2.402798 | 12.18398 | 3.257371 | 2.402798 | 2.402798 | 11.26987 | 3.485922 | 3.000658 | 11.89366 | 2.402798 | 3.940320 | 2.402798 | 3.840527 | 3.602093 | 12.11655 | 2.402798 | 6.262763 | 2.402798 |
ENSG00000163380.16.LMOD3 | 845.7891 | -6.889563 | 0.8576780 | -8.032808 | 0 | 0 | 4.114646 | 3.389835 | 3.944622 | 8.344091 | 2.402798 | 6.264901 | 4.985034 | 5.003512 | 4.286703 | 12.84045 | 5.028777 | 4.585259 | 4.309062 | 11.80976 | 4.685454 | 4.339876 | 12.60251 | 3.705787 | 4.178095 | 4.237574 | 4.237863 | 4.307898 | 12.04467 | 4.561838 | 6.375138 | 3.722904 |
ENSG00000117115.13.PADI2 | 567.0307 | -6.933673 | 0.8652876 | -8.013142 | 0 | 0 | 4.026106 | 3.389835 | 4.029536 | 8.182844 | 4.920438 | 5.713711 | 3.514157 | 7.879622 | 4.580834 | 11.74462 | 4.297294 | 3.955009 | 3.844831 | 11.37450 | 4.400631 | 3.242462 | 11.97760 | 3.243242 | 5.177555 | 2.402798 | 3.931643 | 5.042045 | 11.92653 | 3.555044 | 6.262763 | 3.722904 |
ENSG00000124701.6.APOBEC2 | 665.7476 | -7.527524 | 0.9469407 | -7.949309 | 0 | 0 | 4.197081 | 3.661730 | 3.517710 | 7.804887 | 2.402798 | 5.922090 | 3.676300 | 5.227575 | 4.009117 | 12.51201 | 4.792667 | 2.402798 | 3.635105 | 11.66065 | 4.685454 | 4.190388 | 11.74044 | 3.575675 | 4.548408 | 3.965866 | 4.237863 | 4.381573 | 12.09198 | 3.228088 | 6.277302 | 3.529009 |
dge1 <- dge
write.table(dge1,file="tear1.tsv",quote=FALSE,sep='\t')
# mitch
m1 <- mitch_import(dge1, DEtype="deseq2",geneTable=gt)
## The input is a single dataframe; one contrast only. Converting
## it to a list for you.
## Note: Mean no. genes in input = 16573
## Note: no. genes in output = 16550
## Note: estimated proportion of input genes in output = 0.999
mres1 <- mitch_calc(m1, genesets, priority="effect")
## Note: Enrichments with large effect sizes may not be
## statistically significant.
head(mres1$enrichment_result,20) %>%
kbl(caption = "Top gene pathway differences between tendon (ctrl) and tear (case) of intact tissues") %>%
kable_paper("hover", full_width = F)
set | setSize | pANOVA | s.dist | p.adjustANOVA | |
---|---|---|---|---|---|
1443 | mitochondrial fatty acid beta-oxidation of saturated fatty acids | 10 | 0.0000102 | -0.8056106 | 0.0001781 |
197 | Citric acid cycle (TCA cycle) | 22 | 0.0000000 | -0.7666989 | 0.0000000 |
494 | Glyoxylate metabolism and glycine degradation | 23 | 0.0000000 | -0.7666164 | 0.0000000 |
45 | Activation of PPARGC1A (PGC-1alpha) by phosphorylation | 10 | 0.0001117 | -0.7055260 | 0.0012754 |
123 | Branched-chain amino acid catabolism | 21 | 0.0000001 | -0.6868188 | 0.0000014 |
1429 | Zinc transporters | 10 | 0.0001695 | 0.6867110 | 0.0016855 |
214 | Complex I biogenesis | 51 | 0.0000000 | -0.6736724 | 0.0000000 |
718 | Mucopolysaccharidoses | 11 | 0.0001164 | 0.6709376 | 0.0012941 |
319 | Dissolution of Fibrin Clot | 10 | 0.0002836 | 0.6628295 | 0.0024639 |
1074 | Respiratory electron transport | 93 | 0.0000000 | -0.6422518 | 0.0000000 |
302 | Diseases associated with N-glycosylation of proteins | 20 | 0.0000009 | 0.6349788 | 0.0000192 |
406 | Formation of ATP by chemiosmotic coupling | 16 | 0.0000115 | -0.6333313 | 0.0001957 |
1075 | Respiratory electron transport, ATP synthesis by chemiosmotic coupling, and heat production by uncoupling proteins. | 113 | 0.0000000 | -0.6289399 | 0.0000000 |
1324 | The citric acid (TCA) cycle and respiratory electron transport | 160 | 0.0000000 | -0.6139208 | 0.0000000 |
143 | CS/DS degradation | 11 | 0.0004299 | 0.6130688 | 0.0034531 |
1323 | The activation of arylsulfatases | 10 | 0.0011064 | 0.5956832 | 0.0073180 |
490 | Glycogen synthesis | 13 | 0.0002094 | -0.5938153 | 0.0019624 |
915 | Pyruvate metabolism and Citric Acid (TCA) cycle | 51 | 0.0000000 | -0.5910911 | 0.0000000 |
1256 | Syndecan interactions | 26 | 0.0000004 | 0.5745955 | 0.0000093 |
161 | Carnitine metabolism | 14 | 0.0002139 | -0.5713940 | 0.0019921 |
m1top <- subset(mres1$enrichment_result,p.adjustANOVA<0.05)
m1up <- subset(m1top,s.dist>0)$set
m1dn <- subset(m1top,s.dist<0)$set
if (! file.exists("tear_mitchres1.html") ) {
mitch_report(mres1,outfile="tear_mitchres1.html",overwrite=FALSE)
}
colnames(x2) == rownames(ss2)
## [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
x2f <- x2[which(rowMeans(x2)>10),]
dim(x2)
## [1] 60651 12
dim(x2f)
## [1] 16590 12
ss2$tissue <- factor(ss2$Tissue,levels=c("tendon","tear"))
ss2$redcap <- as.character(ss2$Redcap_ID,ordered=FALSE) # unfortunately not possible to correct for patient of origin.
dds <- DESeqDataSetFromMatrix(countData = x2f , colData = ss2, design = ~ Age + Sex + tissue )
## converting counts to integer mode
## Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in
## design formula are characters, converting to factors
## the design formula contains one or more numeric variables with integer values,
## specifying a model with increasing fold change for higher values.
## did you mean for this to be a factor? if so, first convert
## this variable to a factor using the factor() function
## the design formula contains one or more numeric variables that have mean or
## standard deviation larger than 5 (an arbitrary threshold to trigger this message).
## Including numeric variables with large mean can induce collinearity with the intercept.
## Users should center and scale numeric variables in the design to improve GLM convergence.
res <- DESeq(dds)
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
z <- results(res)
vsd <- vst(dds, blind=FALSE)
zz <- cbind(as.data.frame(z),assay(vsd))
dge <- as.data.frame(zz[order(zz$pvalue),])
head(dge,20) %>%
kbl(caption = "Top gene expression differences between tendon (ctrl) and tear (case) of torn tissues") %>%
kable_paper("hover", full_width = F)
baseMean | log2FoldChange | lfcSE | stat | pvalue | padj | 1.3_S93 | 16.2_S82 | 16.3_S108 | 17.2_S83 | 17.3_S109 | 2.2_S68 | 21.2_S87 | 21.3_S113 | 5.2_S71 | 5.3_S97 | 6.2_S72 | 6.3_S98 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ENSG00000159251.8.ACTC1 | 1096.92105 | -7.850215 | 1.3686937 | -5.735553 | 0e+00 | 0.0001612 | 5.434797 | 13.242506 | 2.324036 | 5.431931 | 3.973187 | 6.624198 | 9.355165 | 3.202362 | 11.371636 | 3.818985 | 4.856548 | 3.778394 |
ENSG00000274276.4.CBSL | 26.53041 | 2.748503 | 0.4964329 | 5.536505 | 0e+00 | 0.0001618 | 5.078619 | 3.005120 | 4.420193 | 4.249733 | 6.430281 | 3.718052 | 4.370129 | 6.348402 | 4.159482 | 6.411412 | 3.674782 | 4.596819 |
ENSG00000162267.12.ITIH3 | 85.27914 | -4.518586 | 0.8174848 | -5.527426 | 0e+00 | 0.0001618 | 4.792380 | 7.158375 | 4.527603 | 5.886580 | 4.198942 | 9.151117 | 5.569679 | 2.949825 | 7.521479 | 3.928078 | 4.254272 | 4.196300 |
ENSG00000162998.5.FRZB | 49.83554 | -4.070802 | 0.7407816 | -5.495279 | 0e+00 | 0.0001618 | 4.698151 | 7.225747 | 3.673819 | 5.667609 | 4.198942 | 6.609311 | 7.370305 | 2.949825 | 7.035782 | 2.956933 | 4.465615 | 3.778394 |
ENSG00000196557.13.CACNA1H | 105.20850 | -6.041900 | 1.1128431 | -5.429247 | 1e-07 | 0.0001819 | 5.078619 | 4.889082 | 3.773936 | 7.725333 | 3.520144 | 9.266824 | 6.109321 | 2.949825 | 8.392529 | 2.324036 | 4.529021 | 2.324036 |
ENSG00000198768.11.APCDD1L | 98.62085 | 3.786230 | 0.7008539 | 5.402310 | 1e-07 | 0.0001819 | 5.041208 | 3.278690 | 8.042205 | 5.284509 | 7.836187 | 4.527866 | 4.455275 | 6.331292 | 4.065862 | 8.877099 | 3.674782 | 6.556856 |
ENSG00000258227.7.CLEC5A | 79.36328 | 4.152771 | 0.7785411 | 5.334041 | 1e-07 | 0.0002110 | 3.478634 | 4.494723 | 8.200848 | 4.002078 | 7.176471 | 2.966670 | 3.678965 | 6.524250 | 4.404316 | 8.547718 | 3.901512 | 5.549560 |
ENSG00000104951.16.IL4I1 | 58.29778 | 4.364987 | 0.8209387 | 5.317069 | 1e-07 | 0.0002110 | 3.720953 | 4.331861 | 8.697712 | 4.132160 | 6.804925 | 2.966670 | 3.019909 | 5.819243 | 3.233675 | 6.427970 | 3.999880 | 5.365597 |
ENSG00000121068.14.TBX2 | 184.33772 | -3.688689 | 0.6957024 | -5.302107 | 1e-07 | 0.0002110 | 6.288720 | 7.944740 | 4.029754 | 8.471152 | 5.441103 | 9.551445 | 8.038406 | 3.683482 | 8.570970 | 6.234360 | 6.476076 | 3.934810 |
ENSG00000250945.1.AC096773.1 | 30.86213 | -1.879814 | 0.3558985 | -5.281882 | 1e-07 | 0.0002121 | 5.041208 | 6.304619 | 4.673866 | 5.360159 | 4.198942 | 6.467880 | 5.195676 | 4.265908 | 5.439124 | 4.027783 | 5.827013 | 4.507695 |
ENSG00000286208.1.AC093838.1 | 31.72052 | -2.282873 | 0.4359259 | -5.236837 | 2e-07 | 0.0002464 | 4.792380 | 6.103639 | 4.240153 | 6.243700 | 4.556011 | 6.667955 | 5.374307 | 3.803289 | 4.246486 | 2.324036 | 5.752566 | 5.209809 |
ENSG00000072840.13.EVC | 184.75271 | 1.651327 | 0.3167304 | 5.213667 | 2e-07 | 0.0002496 | 7.120977 | 6.150807 | 8.253792 | 7.092872 | 8.804750 | 6.830757 | 7.033114 | 8.004625 | 6.136553 | 8.218287 | 6.521389 | 8.099035 |
ENSG00000139330.6.KERA | 60.93028 | -5.564602 | 1.0694044 | -5.203459 | 2e-07 | 0.0002496 | 3.824033 | 8.908761 | 2.324036 | 5.384494 | 3.520144 | 6.134673 | 6.711413 | 2.324036 | 6.003304 | 3.212191 | 2.945596 | 3.778394 |
ENSG00000278969.1.AC026310.2 | 20.66536 | 3.707920 | 0.7193917 | 5.154244 | 3e-07 | 0.0002867 | 3.478634 | 3.005120 | 6.384411 | 3.688023 | 5.831402 | 3.419806 | 3.956625 | 5.867699 | 2.324036 | 4.894080 | 3.674782 | 5.413895 |
ENSG00000211451.12.GNRHR2 | 26.52316 | -1.508742 | 0.2929067 | -5.150932 | 3e-07 | 0.0002867 | 4.880463 | 6.029829 | 4.719254 | 5.687205 | 4.198942 | 5.581157 | 5.455741 | 4.101570 | 5.254073 | 4.119796 | 5.375155 | 4.970508 |
ENSG00000171551.12.ECEL1 | 18.29803 | -4.957437 | 0.9660194 | -5.131819 | 3e-07 | 0.0002905 | 2.912772 | 6.587294 | 2.324036 | 4.068872 | 3.309590 | 4.592543 | 3.507573 | 2.324036 | 6.748344 | 2.956933 | 3.384893 | 3.073929 |
ENSG00000231290.6.APCDD1L.DT | 54.34127 | 2.928137 | 0.5729635 | 5.110512 | 3e-07 | 0.0002905 | 5.376433 | 5.147927 | 8.029247 | 4.249733 | 6.953951 | 4.388050 | 4.073806 | 5.914558 | 4.065862 | 6.840100 | 3.999880 | 5.153752 |
ENSG00000110786.18.PTPN5 | 38.19020 | -4.297182 | 0.8412363 | -5.108175 | 3e-07 | 0.0002905 | 5.315533 | 5.720823 | 3.295228 | 7.571859 | 3.309590 | 5.781675 | 5.494753 | 2.324036 | 5.539470 | 2.324036 | 6.296472 | 4.412055 |
ENSG00000088340.17.FER1L4 | 285.04857 | 3.713531 | 0.7275814 | 5.103939 | 3e-07 | 0.0002905 | 4.487007 | 5.841102 | 10.085815 | 6.474234 | 9.746425 | 5.193830 | 5.331745 | 7.187214 | 4.842303 | 8.718440 | 4.702777 | 9.496921 |
ENSG00000184166.2.OR1D2 | 71.97979 | -1.980638 | 0.3984338 | -4.971058 | 7e-07 | 0.0005524 | 5.718611 | 7.075569 | 5.293520 | 6.906434 | 4.556011 | 7.833395 | 6.499901 | 5.423759 | 5.979833 | 3.928078 | 6.621865 | 6.111590 |
dge2 <- dge
write.table(dge2,file="tear2.tsv",quote=FALSE,sep='\t')
# mitch
m2 <- mitch_import(dge2, DEtype="deseq2",geneTable=gt)
## The input is a single dataframe; one contrast only. Converting
## it to a list for you.
## Note: Mean no. genes in input = 16590
## Note: no. genes in output = 16566
## Note: estimated proportion of input genes in output = 0.999
mres2 <- mitch_calc(m2, genesets, priority="effect")
## Note: Enrichments with large effect sizes may not be
## statistically significant.
head(mres2$enrichment_result,20) %>%
kbl(caption = "Top gene pathway differences between tendon (ctrl) and tear (case) of torn tissues") %>%
kable_paper("hover", full_width = F)
set | setSize | pANOVA | s.dist | p.adjustANOVA | |
---|---|---|---|---|---|
374 | Expression and translocation of olfactory receptors | 21 | 0.0000000 | -0.7671113 | 0.0000001 |
1430 | Zinc transporters | 10 | 0.0000819 | 0.7192196 | 0.0010779 |
804 | Olfactory Signaling Pathway | 25 | 0.0000000 | -0.6910271 | 0.0000001 |
45 | Activation of PPARGC1A (PGC-1alpha) by phosphorylation | 10 | 0.0001571 | -0.6901667 | 0.0017544 |
1344 | Trafficking and processing of endosomal TLR | 12 | 0.0001176 | 0.6419999 | 0.0014699 |
382 | FCGR activation | 10 | 0.0004769 | 0.6379319 | 0.0045899 |
615 | Keratan sulfate degradation | 13 | 0.0001005 | 0.6229547 | 0.0012896 |
197 | Citric acid cycle (TCA cycle) | 22 | 0.0000016 | -0.5907992 | 0.0000412 |
718 | Mucopolysaccharidoses | 11 | 0.0008750 | 0.5794514 | 0.0073575 |
856 | Phase 0 - rapid depolarisation | 27 | 0.0000006 | -0.5553898 | 0.0000178 |
1015 | Regulation of CDH11 gene transcription | 10 | 0.0023704 | 0.5550495 | 0.0164358 |
689 | Metal ion SLC transporters | 18 | 0.0000651 | 0.5436441 | 0.0008988 |
1083 | Retrograde neurotrophin signalling | 13 | 0.0007301 | 0.5410732 | 0.0063584 |
776 | Nitric oxide stimulates guanylate cyclase | 17 | 0.0001331 | -0.5351914 | 0.0015580 |
319 | Dissolution of Fibrin Clot | 10 | 0.0034828 | 0.5335347 | 0.0223925 |
494 | Glyoxylate metabolism and glycine degradation | 24 | 0.0000068 | -0.5304881 | 0.0001409 |
143 | CS/DS degradation | 10 | 0.0042307 | 0.5223726 | 0.0260065 |
214 | Complex I biogenesis | 51 | 0.0000000 | -0.5163422 | 0.0000000 |
1252 | Striated Muscle Contraction | 35 | 0.0000002 | -0.5116569 | 0.0000056 |
1324 | The activation of arylsulfatases | 10 | 0.0054442 | 0.5075985 | 0.0317149 |
m2top <- subset(mres2$enrichment_result,p.adjustANOVA<0.05)
m2up <- subset(m2top,s.dist>0)$set
m2dn <- subset(m2top,s.dist<0)$set
if (! file.exists("tear_mitchres2.html") ) {
mitch_report(mres2,outfile="tear_mitchres2.html",overwrite=FALSE)
}
l1 <- list("intact"=dge1,"torn"=dge2)
mm <- mitch_import(l1, DEtype="deseq2",geneTable=gt)
## Note: Mean no. genes in input = 16581.5
## Note: no. genes in output = 16178
## Note: estimated proportion of input genes in output = 0.976
mmres1 <- mitch_calc(mm, genesets, priority="effect")
## Note: Enrichments with large effect sizes may not be
## statistically significant.
head(mmres1$enrichment_result,20) %>%
kbl(caption = "Top tendon-tear pathways in intact and torn samples") %>%
kable_paper("hover", full_width = F)
set | setSize | pMANOVA | s.intact | s.torn | p.intact | p.torn | s.dist | SD | p.adjustMANOVA | |
---|---|---|---|---|---|---|---|---|---|---|
1426 | Zinc transporters | 10 | 0.0001508 | 0.6848095 | 0.7194582 | 0.0001767 | 0.0000815 | 0.9932694 | 0.0245003 | 0.0011316 |
45 | Activation of PPARGC1A (PGC-1alpha) by phosphorylation | 10 | 0.0001731 | -0.7032905 | -0.6919842 | 0.0001174 | 0.0001509 | 0.9866405 | 0.0079948 | 0.0012561 |
197 | Citric acid cycle (TCA cycle) | 22 | 0.0000000 | -0.7640899 | -0.5928898 | 0.0000000 | 0.0000015 | 0.9671358 | 0.1210568 | 0.0000001 |
1440 | mitochondrial fatty acid beta-oxidation of saturated fatty acids | 10 | 0.0000572 | -0.8036244 | -0.4966353 | 0.0000108 | 0.0065392 | 0.9447004 | 0.2170741 | 0.0005182 |
494 | Glyoxylate metabolism and glycine degradation | 23 | 0.0000000 | -0.7634008 | -0.5289815 | 0.0000000 | 0.0000112 | 0.9287637 | 0.1657595 | 0.0000000 |
717 | Mucopolysaccharidoses | 11 | 0.0003995 | 0.6686291 | 0.5789740 | 0.0001229 | 0.0008838 | 0.8844636 | 0.0633958 | 0.0024906 |
319 | Dissolution of Fibrin Clot | 10 | 0.0011594 | 0.6626423 | 0.5332756 | 0.0002848 | 0.0034989 | 0.8505749 | 0.0914760 | 0.0057931 |
214 | Complex I biogenesis | 51 | 0.0000000 | -0.6701695 | -0.5185884 | 0.0000000 | 0.0000000 | 0.8473848 | 0.1071841 | 0.0000000 |
382 | FCGR activation | 10 | 0.0015636 | 0.5507546 | 0.6376423 | 0.0025625 | 0.0004797 | 0.8425665 | 0.0614389 | 0.0072651 |
1340 | Trafficking and processing of endosomal TLR | 12 | 0.0004732 | 0.5246299 | 0.6419337 | 0.0016504 | 0.0001178 | 0.8290449 | 0.0829463 | 0.0028411 |
143 | CS/DS degradation | 10 | 0.0023950 | 0.6205715 | 0.5214621 | 0.0006781 | 0.0042980 | 0.8105750 | 0.0700809 | 0.0102173 |
374 | Expression and translocation of olfactory receptors | 21 | 0.0000000 | -0.2445085 | -0.7685273 | 0.0524491 | 0.0000000 | 0.8064853 | 0.3705372 | 0.0000000 |
1073 | Respiratory electron transport | 93 | 0.0000000 | -0.6391709 | -0.4871091 | 0.0000000 | 0.0000000 | 0.8036260 | 0.1075239 | 0.0000000 |
302 | Diseases associated with N-glycosylation of proteins | 20 | 0.0000050 | 0.6326773 | 0.4936750 | 0.0000010 | 0.0001323 | 0.8024933 | 0.0982895 | 0.0000678 |
406 | Formation of ATP by chemiosmotic coupling | 16 | 0.0000609 | -0.6303211 | -0.4945938 | 0.0000127 | 0.0006141 | 0.8012039 | 0.0959737 | 0.0005364 |
615 | Keratan sulfate degradation | 13 | 0.0004343 | 0.4950629 | 0.6233743 | 0.0019972 | 0.0000994 | 0.7960420 | 0.0907299 | 0.0026738 |
1074 | Respiratory electron transport, ATP synthesis by chemiosmotic coupling, and heat production by uncoupling proteins. | 113 | 0.0000000 | -0.6259785 | -0.4794334 | 0.0000000 | 0.0000000 | 0.7884830 | 0.1036231 | 0.0000000 |
1321 | The activation of arylsulfatases | 10 | 0.0038148 | 0.5938521 | 0.5069644 | 0.0011462 | 0.0055029 | 0.7808157 | 0.0614389 | 0.0155036 |
1249 | Striated Muscle Contraction | 34 | 0.0000000 | -0.5653166 | -0.5215669 | 0.0000000 | 0.0000001 | 0.7691651 | 0.0309357 | 0.0000003 |
123 | Branched-chain amino acid catabolism | 21 | 0.0000001 | -0.6844593 | -0.3284291 | 0.0000001 | 0.0091819 | 0.7591773 | 0.2517514 | 0.0000021 |
if (! file.exists("tear_multimitchres1.html") ) {
mitch_report(mmres1,outfile="tear_multimitchres1.html",overwrite=FALSE)
}
## Dataset saved as " /tmp/RtmpUPjaUw/tear_multimitchres1.rds ".
##
##
## processing file: mitch.Rmd
## 1/34
## 2/34 [checklibraries]
## 3/34
## 4/34 [peek]
## 5/34
## 6/34 [metrics]
## 7/34
## 8/34 [scatterplot]
## 9/34
## 10/34 [contourplot]
## 11/34
## 12/34 [input_geneset_metrics1]
## 13/34
## 14/34 [input_geneset_metrics2]
## 15/34
## 16/34 [input_geneset_metrics3]
## 17/34
## 18/34 [echart1d]
## 19/34 [echart2d]
## 20/34
## 21/34 [heatmap]
## 22/34
## 23/34 [effectsize]
## 24/34
## 25/34 [results_table]
## 26/34
## 27/34 [results_table_complete]
## 28/34
## 29/34 [detailed_geneset_reports1d]
## 30/34
## 31/34 [detailed_geneset_reports2d]
## 32/34
## 33/34 [session_info]
## 34/34
## output file: /mnt/data/mdz/projects/shoulder/shoulder-instability-osteroarthritis/mitch.knit.md
## /home/mdz/anaconda3/bin/pandoc +RTS -K512m -RTS /mnt/data/mdz/projects/shoulder/shoulder-instability-osteroarthritis/mitch.knit.md --to html4 --from markdown+autolink_bare_uris+tex_math_single_backslash --output /tmp/RtmpUPjaUw/mitch_report.html --lua-filter /usr/local/lib/R/site-library/rmarkdown/rmarkdown/lua/pagebreak.lua --lua-filter /usr/local/lib/R/site-library/rmarkdown/rmarkdown/lua/latex-div.lua --self-contained --variable bs3=TRUE --section-divs --template /usr/local/lib/R/site-library/rmarkdown/rmd/h/default.html --no-highlight --variable highlightjs=1 --variable theme=bootstrap --mathjax --variable 'mathjax-url=https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML' --include-in-header /tmp/RtmpUPjaUw/rmarkdown-str14d65b2074b384.html
##
## Output created: /tmp/RtmpUPjaUw/mitch_report.html
## [1] TRUE
# prioritise by SD to get the discordant pathways
mmres1 <- mitch_calc(mm, genesets, priority="SD")
## Note: Prioritisation by SD after selecting sets with
## p.adjustMANOVA<=0.05.
head(mmres1$enrichment_result,20) %>%
kbl(caption = "Top tendon-tear pathways in intact and torn samples (discordant only)") %>%
kable_paper("hover", full_width = F)
set | setSize | pMANOVA | s.intact | s.torn | p.intact | p.torn | s.dist | SD | p.adjustMANOVA | |
---|---|---|---|---|---|---|---|---|---|---|
374 | Expression and translocation of olfactory receptors | 21 | 0.0000000 | -0.2445085 | -0.7685273 | 0.0524491 | 0.0000000 | 0.8064853 | 0.3705372 | 0.0000000 |
802 | Olfactory Signaling Pathway | 25 | 0.0000000 | -0.2076568 | -0.6924113 | 0.0723481 | 0.0000000 | 0.7228795 | 0.3427732 | 0.0000000 |
1015 | Regulation of FOXO transcriptional activity by acetylation | 10 | 0.0016650 | -0.4900915 | -0.0217838 | 0.0072833 | 0.9050626 | 0.4905754 | 0.3311436 | 0.0076391 |
114 | Beta-oxidation of very long chain fatty acids | 10 | 0.0016810 | -0.5153018 | -0.0617887 | 0.0047773 | 0.7351367 | 0.5189931 | 0.3206822 | 0.0076644 |
504 | HDMs demethylate histones | 21 | 0.0000170 | -0.0725176 | 0.3769294 | 0.5651727 | 0.0027896 | 0.3838418 | 0.3178070 | 0.0001959 |
393 | FOXO-mediated transcription of cell death genes | 15 | 0.0002053 | -0.4846171 | -0.0573697 | 0.0011553 | 0.7005038 | 0.4880011 | 0.3021095 | 0.0014560 |
1430 | cGMP effects | 14 | 0.0003608 | -0.0712430 | -0.4931240 | 0.6444591 | 0.0013998 | 0.4982438 | 0.2983150 | 0.0023398 |
188 | Chk1/Chk2(Cds1) mediated inactivation of Cyclin B:Cdk1 complex | 11 | 0.0046890 | 0.4235620 | 0.0126014 | 0.0149997 | 0.9423158 | 0.4237494 | 0.2905930 | 0.0185905 |
1196 | Signaling by Leptin | 11 | 0.0017309 | -0.5212920 | -0.1119396 | 0.0027556 | 0.5203670 | 0.5331752 | 0.2894558 | 0.0078187 |
932 | RHO GTPases activate CIT | 19 | 0.0016437 | 0.2330948 | -0.1409513 | 0.0786214 | 0.2875688 | 0.2723976 | 0.2644905 | 0.0075893 |
123 | Branched-chain amino acid catabolism | 21 | 0.0000001 | -0.6844593 | -0.3284291 | 0.0000001 | 0.0091819 | 0.7591773 | 0.2517514 | 0.0000021 |
292 | Deposition of new CENPA-containing nucleosomes at the centromere | 30 | 0.0000306 | 0.3480555 | -0.0028528 | 0.0009697 | 0.9784305 | 0.3480672 | 0.2481296 | 0.0003169 |
792 | Nucleosome assembly | 30 | 0.0000306 | 0.3480555 | -0.0028528 | 0.0009697 | 0.9784305 | 0.3480672 | 0.2481296 | 0.0003169 |
774 | Nitric oxide stimulates guanylate cyclase | 17 | 0.0001308 | -0.1862545 | -0.5369972 | 0.1837300 | 0.0001263 | 0.5683808 | 0.2480125 | 0.0009989 |
289 | Degradation of cysteine and homocysteine | 14 | 0.0014468 | -0.4908880 | -0.1432902 | 0.0014718 | 0.3533218 | 0.5113738 | 0.2457888 | 0.0068095 |
273 | Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of BRCA1 binding function | 24 | 0.0000431 | 0.4456481 | 0.0986288 | 0.0001573 | 0.4030330 | 0.4564317 | 0.2453797 | 0.0004196 |
274 | Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of BRCA2/RAD51/RAD51C binding function | 24 | 0.0000431 | 0.4456481 | 0.0986288 | 0.0001573 | 0.4030330 | 0.4564317 | 0.2453797 | 0.0004196 |
278 | Defective homologous recombination repair (HRR) due to BRCA1 loss of function | 24 | 0.0000431 | 0.4456481 | 0.0986288 | 0.0001573 | 0.4030330 | 0.4564317 | 0.2453797 | 0.0004196 |
280 | Defective homologous recombination repair (HRR) due to PALB2 loss of function | 24 | 0.0000431 | 0.4456481 | 0.0986288 | 0.0001573 | 0.4030330 | 0.4564317 | 0.2453797 | 0.0004196 |
548 | Impaired BRCA2 binding to PALB2 | 23 | 0.0000695 | 0.4507125 | 0.1102445 | 0.0001827 | 0.3601656 | 0.4639996 | 0.2407472 | 0.0005828 |
if (! file.exists("tear_multmitchres1_discord.html") ) {
mitch_report(mmres1,outfile="tear_multmitchres1_discord.html",overwrite=FALSE)
}
## Dataset saved as " /tmp/RtmpUPjaUw/tear_multmitchres1_discord.rds ".
##
##
## processing file: mitch.Rmd
## 1/34
## 2/34 [checklibraries]
## 3/34
## 4/34 [peek]
## 5/34
## 6/34 [metrics]
## 7/34
## 8/34 [scatterplot]
## 9/34
## 10/34 [contourplot]
## 11/34
## 12/34 [input_geneset_metrics1]
## 13/34
## 14/34 [input_geneset_metrics2]
## 15/34
## 16/34 [input_geneset_metrics3]
## 17/34
## 18/34 [echart1d]
## 19/34 [echart2d]
## 20/34
## 21/34 [heatmap]
## 22/34
## 23/34 [effectsize]
## 24/34
## 25/34 [results_table]
## 26/34
## 27/34 [results_table_complete]
## 28/34
## 29/34 [detailed_geneset_reports1d]
## 30/34
## 31/34 [detailed_geneset_reports2d]
## 32/34
## 33/34 [session_info]
## 34/34
## output file: /mnt/data/mdz/projects/shoulder/shoulder-instability-osteroarthritis/mitch.knit.md
## /home/mdz/anaconda3/bin/pandoc +RTS -K512m -RTS /mnt/data/mdz/projects/shoulder/shoulder-instability-osteroarthritis/mitch.knit.md --to html4 --from markdown+autolink_bare_uris+tex_math_single_backslash --output /tmp/RtmpUPjaUw/mitch_report.html --lua-filter /usr/local/lib/R/site-library/rmarkdown/rmarkdown/lua/pagebreak.lua --lua-filter /usr/local/lib/R/site-library/rmarkdown/rmarkdown/lua/latex-div.lua --self-contained --variable bs3=TRUE --section-divs --template /usr/local/lib/R/site-library/rmarkdown/rmd/h/default.html --no-highlight --variable highlightjs=1 --variable theme=bootstrap --mathjax --variable 'mathjax-url=https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML' --include-in-header /tmp/RtmpUPjaUw/rmarkdown-str14d65b52a75977.html
##
## Output created: /tmp/RtmpUPjaUw/mitch_report.html
## [1] TRUE
The other approach is to find the direct differences between intact and torn samples.
colnames(x3) == rownames(ss3)
## [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [16] TRUE TRUE TRUE TRUE
x3f <- x3[which(rowMeans(x3)>10),]
dim(x3)
## [1] 60651 19
dim(x3f)
## [1] 16536 19
ss3$tissue <- factor(ss3$Tissue,levels=c("tendon","tear"))
ss3$integrity <- factor(ss3$Tendon_integrity_2_years_post.op)
dds <- DESeqDataSetFromMatrix(countData = x3f , colData = ss3, design = ~ Age + Sex + integrity )
## converting counts to integer mode
## Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in
## design formula are characters, converting to factors
## the design formula contains one or more numeric variables with integer values,
## specifying a model with increasing fold change for higher values.
## did you mean for this to be a factor? if so, first convert
## this variable to a factor using the factor() function
## the design formula contains one or more numeric variables that have mean or
## standard deviation larger than 5 (an arbitrary threshold to trigger this message).
## Including numeric variables with large mean can induce collinearity with the intercept.
## Users should center and scale numeric variables in the design to improve GLM convergence.
res <- DESeq(dds)
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
## 1 rows did not converge in beta, labelled in mcols(object)$betaConv. Use larger maxit argument with nbinomWaldTest
z <- results(res)
vsd <- vst(dds, blind=FALSE)
zz <- cbind(as.data.frame(z),assay(vsd))
dge <- as.data.frame(zz[order(zz$pvalue),])
head(dge,20) %>%
kbl(caption = "Top gene expression differences between intact (ctrl) and torn (case) tendon.") %>%
kable_paper("hover", full_width = F)
baseMean | log2FoldChange | lfcSE | stat | pvalue | padj | 10.2_S76 | 14.2_S80 | 15.2_S81 | 16.2_S82 | 17.2_S83 | 18.2_S84 | 19.2_S85 | 2.2_S68 | 20.2_S86 | 21.2_S87 | 23.2_S89 | 25.2_S91 | 3.2_S69 | 4.2_S70 | 5.2_S71 | 6.2_S72 | 7.2_S73 | 8.2_S74 | 9.2_S75 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ENSG00000108405.4.P2RX1 | 41.21403 | 4.3413409 | 0.9823026 | 4.419556 | 0.0000099 | 0.1006945 | 3.255370 | 3.885790 | 4.443246 | 3.671201 | 4.290304 | 6.271105 | 1.915476 | 8.759992 | 2.669663 | 3.403286 | 4.376566 | 2.863137 | 3.586673 | 3.898479 | 7.374338 | 3.109345 | 3.788873 | 2.781987 | 5.454967 |
ENSG00000255769.7.GOLGA2P10 | 16.18043 | -2.4280355 | 0.5644333 | -4.301722 | 0.0000169 | 0.1006945 | 3.255370 | 4.046465 | 4.676274 | 2.668721 | 3.198832 | 1.915476 | 6.246798 | 3.583503 | 4.283121 | 4.144979 | 5.391856 | 4.573979 | 5.908772 | 3.537995 | 3.605618 | 3.282044 | 4.425996 | 4.882578 | 4.596984 |
ENSG00000134917.10.ADAMTS8 | 44.63816 | 3.4303461 | 0.8005346 | 4.285069 | 0.0000183 | 0.1006945 | 4.104454 | 3.701675 | 4.378192 | 9.330768 | 3.510394 | 4.479089 | 3.554327 | 4.003720 | 1.915476 | 3.702948 | 3.876923 | 3.993704 | 3.814767 | 3.427855 | 6.228635 | 3.977773 | 3.512536 | 4.735653 | 3.854440 |
ENSG00000162852.14.CNST | 175.51083 | -0.7802754 | 0.2058750 | -3.790044 | 0.0001506 | 0.6226657 | 7.474345 | 7.222186 | 6.959817 | 6.980698 | 6.506107 | 6.989153 | 8.685764 | 7.097355 | 7.434936 | 7.442272 | 8.134954 | 7.690348 | 8.506628 | 7.111960 | 7.440062 | 6.525901 | 7.651766 | 7.710144 | 6.892307 |
ENSG00000227827.3.PKD1P2 | 66.04932 | -3.1708756 | 0.8872557 | -3.573801 | 0.0003518 | 0.9215750 | 5.204110 | 7.662761 | 7.501349 | 4.196915 | 2.504424 | 4.763028 | 6.920423 | 5.356804 | 4.109923 | 6.315477 | 8.350164 | 5.294121 | 1.915476 | 6.724714 | 1.915476 | 4.143746 | 6.117823 | 5.742922 | 5.011279 |
ENSG00000273066.5.AL355987.4 | 12.13401 | -1.3820308 | 0.3876083 | -3.565534 | 0.0003631 | 0.9215750 | 4.317294 | 4.255494 | 3.802930 | 3.795263 | 3.755181 | 4.763028 | 4.843324 | 3.911130 | 4.757901 | 4.799120 | 4.198760 | 3.993704 | 4.795113 | 4.298916 | 2.927189 | 2.617642 | 3.512536 | 4.384472 | 4.506250 |
ENSG00000120693.14.SMAD9 | 98.94344 | 1.2294166 | 0.3466388 | 3.546679 | 0.0003901 | 0.9215750 | 5.567825 | 5.960168 | 6.607501 | 8.604941 | 7.027494 | 6.570295 | 6.139789 | 7.126734 | 5.278600 | 6.757063 | 6.891459 | 6.506179 | 5.862599 | 6.321890 | 7.348897 | 5.672774 | 6.698430 | 6.559717 | 6.333705 |
ENSG00000122042.10.UBL3 | 289.30915 | -0.4758400 | 0.1389598 | -3.424300 | 0.0006164 | 0.9999176 | 8.396061 | 8.245663 | 8.156159 | 7.906647 | 8.070629 | 7.541399 | 8.940188 | 7.734578 | 8.524283 | 8.000441 | 8.345029 | 8.368836 | 8.271668 | 8.470747 | 7.768950 | 7.986200 | 8.252087 | 8.378637 | 8.028581 |
ENSG00000263276.1.AC020978.7 | 11.21707 | -1.6121027 | 0.4772870 | -3.377638 | 0.0007311 | 0.9999176 | 4.317294 | 2.850282 | 4.080897 | 3.671201 | 3.415976 | 3.457650 | 5.760422 | 3.300721 | 4.757901 | 3.562659 | 3.748702 | 3.993704 | 4.795113 | 3.638623 | 2.927189 | 3.679636 | 4.425996 | 4.481074 | 4.458519 |
ENSG00000225783.8.MIAT | 226.49307 | 2.1919115 | 0.6716071 | 3.263681 | 0.0010997 | 0.9999176 | 7.277072 | 6.981102 | 5.957138 | 10.373561 | 5.766977 | 7.494778 | 3.969024 | 5.484189 | 6.616130 | 7.423980 | 7.397557 | 8.124700 | 5.066314 | 5.493698 | 10.249400 | 7.302258 | 7.537217 | 4.481074 | 6.613693 |
ENSG00000228716.7.DHFR | 109.31693 | -0.6409490 | 0.1989584 | -3.221523 | 0.0012751 | 0.9999176 | 6.776544 | 6.943115 | 7.113019 | 5.954547 | 6.641428 | 7.269581 | 7.229113 | 6.777383 | 7.247293 | 7.106004 | 7.284027 | 6.558848 | 7.746789 | 6.765465 | 6.301307 | 6.375359 | 6.381335 | 5.887241 | 6.686046 |
ENSG00000138829.12.FBN2 | 12.72584 | 2.2872322 | 0.7107843 | 3.217899 | 0.0012913 | 0.9999176 | 3.085671 | 3.885790 | 5.241285 | 6.774140 | 5.055372 | 3.457650 | 1.915476 | 4.319711 | 3.673207 | 2.683679 | 3.252399 | 3.377566 | 1.915476 | 3.427855 | 4.117123 | 3.561678 | 3.703592 | 4.167603 | 2.540207 |
ENSG00000000005.6.TNMD | 250.62746 | 2.6208379 | 0.8228680 | 3.185004 | 0.0014475 | 0.9999176 | 5.133254 | 7.449118 | 5.670393 | 11.511902 | 6.969918 | 5.708015 | 2.894475 | 7.662883 | 6.832078 | 6.771613 | 7.831373 | 7.781693 | 2.915085 | 5.913338 | 8.068087 | 4.708157 | 4.963498 | 5.921156 | 7.674865 |
ENSG00000215424.10.MCM3AP.AS1 | 31.28213 | -0.7800067 | 0.2468202 | -3.160222 | 0.0015765 | 0.9999176 | 5.540829 | 5.490212 | 6.139853 | 4.359410 | 4.876313 | 4.825751 | 5.552982 | 5.141293 | 5.531626 | 5.061830 | 5.127730 | 4.625413 | 5.489322 | 5.493698 | 4.718563 | 4.943848 | 5.376546 | 5.352296 | 5.277691 |
ENSG00000116396.15.KCNC4 | 132.81346 | 1.0654126 | 0.3396946 | 3.136384 | 0.0017105 | 0.9999176 | 6.918901 | 6.714121 | 6.893662 | 8.699243 | 6.909945 | 7.117832 | 5.171001 | 7.662883 | 5.658273 | 7.237539 | 7.465408 | 6.479103 | 6.819663 | 7.111960 | 7.903149 | 6.738127 | 7.262890 | 6.352104 | 6.725814 |
ENSG00000274810.4.NPHP3.ACAD11 | 16.35090 | -1.2720445 | 0.4076874 | -3.120146 | 0.0018076 | 0.9999176 | 4.979858 | 3.598092 | 5.377657 | 3.795263 | 3.959221 | 5.152446 | 4.134502 | 3.811263 | 4.574173 | 4.144979 | 4.919420 | 3.993704 | 5.146198 | 5.134751 | 4.348612 | 3.109345 | 4.819151 | 4.571277 | 4.248745 |
ENSG00000083635.8.NUFIP1 | 26.50502 | -0.8498701 | 0.2726964 | -3.116543 | 0.0018299 | 0.9999176 | 4.807586 | 4.644792 | 4.728848 | 4.011653 | 4.338252 | 5.051766 | 5.983432 | 4.171147 | 4.970251 | 5.241519 | 5.648388 | 5.056001 | 5.862599 | 5.165836 | 4.718563 | 5.107418 | 4.928785 | 5.193916 | 5.043493 |
ENSG00000197978.9.GOLGA6L9 | 92.96471 | -0.8726635 | 0.2800262 | -3.116363 | 0.0018310 | 0.9999176 | 6.426414 | 5.516474 | 7.073732 | 5.929771 | 6.367914 | 6.570295 | 7.581668 | 6.550328 | 7.066006 | 6.869547 | 6.877288 | 6.423371 | 7.271051 | 6.899639 | 6.007433 | 4.899790 | 6.698430 | 7.047007 | 5.847820 |
ENSG00000187609.16.EXD3 | 203.10779 | 0.5618165 | 0.1828105 | 3.073219 | 0.0021176 | 0.9999176 | 7.301262 | 7.495767 | 7.938462 | 7.557649 | 7.796364 | 7.777810 | 7.263434 | 8.088059 | 7.777797 | 7.744521 | 7.240420 | 7.307863 | 7.528458 | 7.423227 | 8.093832 | 8.658078 | 7.570885 | 7.192513 | 7.955279 |
ENSG00000115457.10.IGFBP2 | 123.57068 | 1.4688315 | 0.4869031 | 3.016682 | 0.0025556 | 0.9999176 | 5.335983 | 7.291830 | 5.796926 | 9.616355 | 7.193878 | 7.002551 | 5.941524 | 6.315066 | 4.507041 | 6.650868 | 7.183988 | 6.609656 | 6.232722 | 6.251836 | 7.251573 | 6.224910 | 6.525868 | 5.921156 | 7.095623 |
dge3 <- dge
write.table(dge3,file="tear3.tsv",quote=FALSE,sep='\t')
# mitch
m3 <- mitch_import(dge3, DEtype="deseq2",geneTable=gt)
## The input is a single dataframe; one contrast only. Converting
## it to a list for you.
## Note: Mean no. genes in input = 16536
## Note: no. genes in output = 16514
## Note: estimated proportion of input genes in output = 0.999
mres3 <- mitch_calc(m3, genesets, priority="effect")
## Note: Enrichments with large effect sizes may not be
## statistically significant.
head(mres3$enrichment_result,20) %>%
kbl(caption = "Top gene pathway differences between intact (ctrl) and torn (case) tendon.") %>%
kable_paper("hover", full_width = F)
set | setSize | pANOVA | s.dist | p.adjustANOVA | |
---|---|---|---|---|---|
206 | Cohesin Loading onto Chromatin | 10 | 1.15e-05 | -0.8011512 | 0.0001067 |
424 | Formation of the ternary complex, and subsequently, the 43S complex | 51 | 0.00e+00 | -0.7765875 | 0.0000000 |
416 | Formation of a pool of free 40S subunits | 100 | 0.00e+00 | -0.7415316 | 0.0000000 |
1093 | SARS-CoV-1 modulates host translation machinery | 36 | 0.00e+00 | -0.7333583 | 0.0000000 |
1086 | Ribosomal scanning and start codon recognition | 58 | 0.00e+00 | -0.7279035 | 0.0000000 |
1416 | Viral mRNA Translation | 88 | 0.00e+00 | -0.7252485 | 0.0000000 |
848 | Peptide chain elongation | 88 | 0.00e+00 | -0.7213675 | 0.0000000 |
461 | GTP hydrolysis and joining of the 60S ribosomal subunit | 111 | 0.00e+00 | -0.7199721 | 0.0000000 |
1369 | Translation initiation complex formation | 58 | 0.00e+00 | -0.7160432 | 0.0000000 |
1138 | Selenocysteine synthesis | 92 | 0.00e+00 | -0.7141361 | 0.0000000 |
621 | L13a-mediated translational silencing of Ceruloplasmin expression | 110 | 0.00e+00 | -0.7133881 | 0.0000000 |
52 | Activation of the mRNA upon binding of the cap-binding complex and eIFs, and subsequent binding to 43S | 59 | 0.00e+00 | -0.7112021 | 0.0000000 |
373 | Eukaryotic Translation Termination | 92 | 0.00e+00 | -0.7103501 | 0.0000000 |
371 | Eukaryotic Translation Elongation | 93 | 0.00e+00 | -0.7030815 | 0.0000000 |
368 | Establishment of Sister Chromatid Cohesion | 10 | 1.23e-04 | -0.7011997 | 0.0008410 |
780 | Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) | 94 | 0.00e+00 | -0.6945513 | 0.0000000 |
154 | Cap-dependent Translation Initiation | 118 | 0.00e+00 | -0.6893703 | 0.0000000 |
372 | Eukaryotic Translation Initiation | 118 | 0.00e+00 | -0.6893703 | 0.0000000 |
828 | PINK1-PRKN Mediated Mitophagy | 21 | 1.00e-07 | -0.6784032 | 0.0000011 |
1079 | Response of EIF2AK4 (GCN2) to amino acid deficiency | 100 | 0.00e+00 | -0.6691056 | 0.0000000 |
m3top <- subset(mres3$enrichment_result,p.adjustANOVA<0.05)
m3up <- subset(m3top,s.dist>0)$set
m3dn <- subset(m3top,s.dist<0)$set
if (! file.exists("tear_mitchres3.html") ) {
mitch_report(mres3,outfile="tear_mitchres3.html",overwrite=FALSE)
}
colnames(x4) == rownames(ss4)
## [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [16] TRUE TRUE TRUE TRUE
x4f <- x4[which(rowMeans(x4)>10),]
dim(x4)
## [1] 60651 19
dim(x4f)
## [1] 16462 19
ss4$tissue <- factor(ss4$Tissue,levels=c("tendon","tear"))
ss4$integrity <- factor(ss4$Tendon_integrity_2_years_post.op)
dds <- DESeqDataSetFromMatrix(countData = x4f , colData = ss4, design = ~ Age + Sex + integrity )
## converting counts to integer mode
## Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in
## design formula are characters, converting to factors
## the design formula contains one or more numeric variables with integer values,
## specifying a model with increasing fold change for higher values.
## did you mean for this to be a factor? if so, first convert
## this variable to a factor using the factor() function
## the design formula contains one or more numeric variables that have mean or
## standard deviation larger than 5 (an arbitrary threshold to trigger this message).
## Including numeric variables with large mean can induce collinearity with the intercept.
## Users should center and scale numeric variables in the design to improve GLM convergence.
res <- DESeq(dds)
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
z <- results(res)
vsd <- vst(dds, blind=FALSE)
zz <- cbind(as.data.frame(z),assay(vsd))
dge <- as.data.frame(zz[order(zz$pvalue),])
head(dge,20) %>%
kbl(caption = "Top gene expression differences between intact (ctrl) and torn (case) tear.") %>%
kable_paper("hover", full_width = F)
baseMean | log2FoldChange | lfcSE | stat | pvalue | padj | 1.3_S93 | 10.3_S102 | 11.3_S103 | 14.3_S106 | 15.3_S107 | 16.3_S108 | 17.3_S109 | 18.3_S110 | 19.3_S111 | 20.3_S112 | 21.3_S113 | 23.3_S115 | 3.3_S95 | 4.3_S96 | 5.3_S97 | 6.3_S98 | 7.3_S99 | 8.3_S100 | 9.3_S101 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ENSG00000160808.11.MYL3 | 292.03470 | 5.640668 | 0.7882517 | 7.155922 | 0e+00 | 0.0000000 | 12.015251 | 5.040094 | 5.447762 | 4.602719 | 4.765705 | 5.348479 | 10.151130 | 5.039428 | 4.686916 | 5.584445 | 5.858599 | 5.369543 | 4.893233 | 5.470333 | 5.455282 | 5.824088 | 5.107987 | 4.749442 | 4.352538 |
ENSG00000154358.23.OBSCN | 535.03337 | 4.291105 | 0.6509957 | 6.591602 | 0e+00 | 0.0000003 | 12.715101 | 6.278577 | 6.855044 | 6.537729 | 6.192394 | 8.402272 | 10.817667 | 6.855135 | 7.047653 | 6.223473 | 6.227622 | 6.777732 | 6.212417 | 6.673548 | 7.273327 | 7.700741 | 7.372039 | 5.956808 | 5.997233 |
ENSG00000130598.16.TNNI2 | 188.59511 | 5.274715 | 0.8063469 | 6.541496 | 0e+00 | 0.0000003 | 11.282418 | 5.353189 | 3.870466 | 5.461623 | 4.600731 | 5.560983 | 9.802406 | 5.241439 | 4.612155 | 4.578215 | 5.178233 | 5.054253 | 4.646470 | 4.682696 | 4.894613 | 4.922054 | 5.591792 | 5.229181 | 4.700957 |
ENSG00000108515.18.ENO3 | 426.53843 | 4.585168 | 0.7448044 | 6.156205 | 0e+00 | 0.0000030 | 12.572473 | 6.261282 | 5.747611 | 6.553861 | 6.065882 | 6.388926 | 10.349496 | 6.355950 | 5.767234 | 5.738964 | 6.227622 | 5.900326 | 5.755349 | 5.871079 | 6.094762 | 5.216327 | 6.282344 | 5.509201 | 5.740993 |
ENSG00000163126.15.ANKRD23 | 281.00240 | 4.723716 | 0.8017283 | 5.891916 | 0e+00 | 0.0000123 | 11.955352 | 5.040094 | 5.646383 | 5.267410 | 5.703239 | 6.007473 | 9.901292 | 5.826145 | 5.099072 | 4.912275 | 5.595665 | 6.028537 | 5.484306 | 5.232525 | 5.417251 | 4.739598 | 6.302268 | 4.687394 | 5.720663 |
ENSG00000164309.15.CMYA5 | 571.59174 | 4.506435 | 0.7758916 | 5.808073 | 0e+00 | 0.0000170 | 12.983189 | 6.393962 | 5.908083 | 5.497114 | 6.065882 | 6.724226 | 10.603104 | 7.168243 | 6.964710 | 5.167364 | 7.216138 | 7.007944 | 6.394160 | 6.135957 | 6.641707 | 6.081237 | 7.334429 | 5.060725 | 7.122765 |
ENSG00000036448.10.MYOM2 | 176.05466 | 5.574517 | 0.9765226 | 5.708539 | 0e+00 | 0.0000254 | 11.488184 | 4.375692 | 4.357373 | 4.334825 | 5.091668 | 4.704909 | 8.479627 | 4.368493 | 4.531013 | 4.033026 | 5.346580 | 5.264143 | 4.495288 | 4.608167 | 4.450246 | 4.217480 | 5.412364 | 4.749442 | 5.031172 |
ENSG00000185482.8.STAC3 | 239.25638 | 3.901258 | 0.6854444 | 5.691575 | 0e+00 | 0.0000254 | 11.702834 | 6.393962 | 5.478086 | 6.147056 | 4.972494 | 6.491167 | 9.202979 | 5.883791 | 5.193673 | 5.128558 | 6.451212 | 5.264143 | 5.980211 | 6.113895 | 5.813077 | 5.452487 | 5.591792 | 5.790366 | 6.495200 |
ENSG00000214872.8.SMTNL1 | 59.41365 | 5.106018 | 0.9334413 | 5.470101 | 0e+00 | 0.0000807 | 9.626334 | 4.375692 | 4.869442 | 4.221376 | 4.278829 | 4.159550 | 8.260970 | 4.368493 | 4.342185 | 3.868646 | 4.220404 | 4.837829 | 4.408910 | 4.225095 | 4.096129 | 4.000754 | 4.829174 | 4.055743 | 4.193812 |
ENSG00000165887.12.ANKRD2 | 70.68061 | 4.454290 | 0.8182982 | 5.443358 | 1e-07 | 0.0000844 | 9.858939 | 4.605613 | 4.265873 | 5.180258 | 4.278829 | 4.159550 | 8.380178 | 5.287039 | 3.467455 | 4.702193 | 4.084522 | 4.710819 | 4.713946 | 4.225095 | 4.450246 | 5.340015 | 4.232306 | 4.472996 | 4.277470 |
ENSG00000101306.11.MYLK2 | 70.38820 | 5.092071 | 0.9503123 | 5.358313 | 1e-07 | 0.0001233 | 9.931606 | 4.375692 | 5.095141 | 4.221376 | 4.132793 | 4.264141 | 8.260970 | 3.467455 | 3.467455 | 5.046878 | 4.220404 | 4.325823 | 3.894437 | 4.225095 | 5.112265 | 4.516848 | 4.094349 | 4.185524 | 5.100391 |
ENSG00000163157.15.TMOD4 | 70.37804 | 4.699162 | 0.8809796 | 5.334020 | 1e-07 | 0.0001292 | 10.054092 | 4.459244 | 4.035576 | 4.522187 | 5.146958 | 4.815391 | 7.669797 | 4.860623 | 4.441855 | 4.157969 | 4.675422 | 4.392411 | 4.573950 | 4.608167 | 4.349771 | 4.000754 | 5.004587 | 3.467455 | 4.651254 |
ENSG00000196218.13.RYR1 | 387.75695 | 3.931141 | 0.7446007 | 5.279528 | 1e-07 | 0.0001522 | 12.319139 | 6.500519 | 4.869442 | 6.537729 | 5.770913 | 6.477011 | 10.241977 | 6.975951 | 6.456296 | 4.758803 | 6.144280 | 6.102935 | 7.038689 | 5.997906 | 5.563009 | 7.255457 | 6.587491 | 6.487995 | 6.879343 |
ENSG00000163395.17.IGFN1 | 68.20521 | 5.131902 | 0.9726908 | 5.275985 | 1e-07 | 0.0001522 | 9.655233 | 4.671000 | 3.870466 | 4.433714 | 4.278829 | 4.159550 | 8.733481 | 4.250861 | 3.467455 | 4.033026 | 4.432486 | 4.876976 | 3.467455 | 4.438414 | 4.234462 | 4.922054 | 5.778761 | 4.550098 | 4.277470 |
ENSG00000072954.7.TMEM38A | 66.01269 | 4.138900 | 0.8229364 | 5.029428 | 5e-07 | 0.0005294 | 9.861859 | 4.605613 | 4.918370 | 4.676928 | 4.506211 | 5.091861 | 7.552611 | 4.645852 | 5.439987 | 4.509528 | 4.520856 | 5.489914 | 4.312410 | 4.935983 | 4.349771 | 5.002966 | 4.890813 | 3.884867 | 4.994936 |
ENSG00000124701.6.APOBEC2 | 49.38139 | 4.486345 | 0.8978211 | 4.996925 | 6e-07 | 0.0005688 | 9.573879 | 4.375692 | 4.265873 | 3.467455 | 4.400404 | 4.159550 | 6.664095 | 4.645852 | 5.281360 | 4.353450 | 4.333715 | 5.178672 | 4.312410 | 4.608167 | 4.697205 | 4.834731 | 4.949151 | 4.055743 | 4.277470 |
ENSG00000156219.17.ART3 | 35.24470 | 5.530251 | 1.1079266 | 4.991532 | 6e-07 | 0.0005688 | 9.247553 | 4.175519 | 4.161064 | 3.906010 | 3.939985 | 4.034329 | 5.931348 | 4.368493 | 4.227819 | 3.868646 | 3.467455 | 4.392411 | 3.467455 | 3.908207 | 4.234462 | 4.634654 | 4.693868 | 3.467455 | 3.467455 |
ENSG00000078814.17.MYH7B | 197.54998 | 3.277687 | 0.6585170 | 4.977376 | 6e-07 | 0.0005780 | 11.175604 | 5.245074 | 6.776412 | 5.779147 | 6.435626 | 6.965037 | 9.042489 | 6.594262 | 6.621182 | 6.080328 | 6.122631 | 6.353801 | 6.047549 | 5.574314 | 5.868859 | 6.856111 | 6.554860 | 4.807947 | 5.980461 |
ENSG00000259768.6.AC004943.2 | 372.17415 | 4.429451 | 0.8945773 | 4.951446 | 7e-07 | 0.0006258 | 5.607887 | 5.420368 | 5.507706 | 6.309092 | 5.516991 | 5.767493 | 5.473861 | 6.068129 | 5.238308 | 6.594197 | 6.673589 | 4.797190 | 7.365020 | 6.157671 | 8.352681 | 12.559802 | 5.890203 | 5.629012 | 5.657723 |
ENSG00000140986.8.RPL3L | 88.55836 | 5.731181 | 1.1604278 | 4.938852 | 8e-07 | 0.0006343 | 10.410749 | 4.459244 | 4.357373 | 3.906010 | 5.033628 | 4.264141 | 8.089585 | 4.470947 | 4.756437 | 4.157969 | 3.467455 | 4.392411 | 3.467455 | 4.225095 | 4.450246 | 5.216327 | 4.829174 | 3.467455 | 4.352538 |
dge4 <- dge
write.table(dge4,file="tear4.tsv",quote=FALSE,sep='\t')
# mitch
m4 <- mitch_import(dge4, DEtype="deseq2",geneTable=gt)
## The input is a single dataframe; one contrast only. Converting
## it to a list for you.
## Note: Mean no. genes in input = 16462
## Note: no. genes in output = 16438
## Note: estimated proportion of input genes in output = 0.999
mres4 <- mitch_calc(m4, genesets, priority="effect")
## Note: Enrichments with large effect sizes may not be
## statistically significant.
head(mres4$enrichment_result,20) %>%
kbl(caption = "Top gene pathway differences between intact (ctrl) and torn (case) tear.") %>%
kable_paper("hover", full_width = F)
set | setSize | pANOVA | s.dist | p.adjustANOVA | |
---|---|---|---|---|---|
405 | Folding of actin by CCT/TriC | 10 | 0.0002124 | -0.6763331 | 0.0014929 |
367 | Establishment of Sister Chromatid Cohesion | 11 | 0.0002019 | -0.6471220 | 0.0014326 |
1443 | mitochondrial fatty acid beta-oxidation of saturated fatty acids | 10 | 0.0004410 | 0.6417336 | 0.0030129 |
120 | Biotin transport and metabolism | 11 | 0.0010470 | 0.5706957 | 0.0066843 |
205 | Cohesin Loading onto Chromatin | 10 | 0.0019163 | -0.5666423 | 0.0110302 |
481 | Gluconeogenesis | 29 | 0.0000002 | 0.5608634 | 0.0000018 |
187 | Chk1/Chk2(Cds1) mediated inactivation of Cyclin B:Cdk1 complex | 12 | 0.0008126 | -0.5582309 | 0.0052333 |
1245 | Somitogenesis | 50 | 0.0000000 | -0.5547327 | 0.0000000 |
1061 | Regulation of ornithine decarboxylase (ODC) | 48 | 0.0000000 | -0.5545302 | 0.0000000 |
489 | Glycogen breakdown (glycogenolysis) | 14 | 0.0003853 | 0.5479438 | 0.0026568 |
1047 | Regulation of activated PAK-2p34 by proteasome mediated degradation | 48 | 0.0000000 | -0.5474502 | 0.0000000 |
762 | Negative regulation of NOTCH4 signaling | 54 | 0.0000000 | -0.5372360 | 0.0000000 |
1113 | SLBP independent Processing of Histone Pre-mRNAs | 10 | 0.0036516 | -0.5308376 | 0.0187982 |
100 | Autodegradation of the E3 ubiquitin ligase COP1 | 49 | 0.0000000 | -0.5282525 | 0.0000000 |
1400 | Ubiquitin-dependent degradation of Cyclin D | 50 | 0.0000000 | -0.5272126 | 0.0000000 |
1399 | Ubiquitin Mediated Degradation of Phosphorylated Cdc25A | 49 | 0.0000000 | -0.5268180 | 0.0000000 |
1448 | p53-Independent DNA Damage Response | 49 | 0.0000000 | -0.5268180 | 0.0000000 |
1449 | p53-Independent G1/S DNA damage checkpoint | 49 | 0.0000000 | -0.5268180 | 0.0000000 |
460 | GSK3B and BTRC:CUL1-mediated-degradation of NFE2L2 | 52 | 0.0000000 | -0.5262771 | 0.0000000 |
1112 | SLBP Dependent Processing of Replication-Dependent Histone Pre-mRNAs | 11 | 0.0026876 | -0.5226152 | 0.0145531 |
m4top <- subset(mres4$enrichment_result,p.adjustANOVA<0.05)
m4up <- subset(m4top,s.dist>0)$set
m4dn <- subset(m4top,s.dist<0)$set
if (! file.exists("tear_mitchres4.html") ) {
mitch_report(mres4,outfile="tear_mitchres4.html",overwrite=FALSE)
}
For reproducibility.
sessionInfo()
## R version 4.3.2 (2023-10-31)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 22.04.4 LTS
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.10.0
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
##
## locale:
## [1] LC_CTYPE=en_AU.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_AU.UTF-8 LC_COLLATE=en_AU.UTF-8
## [5] LC_MONETARY=en_AU.UTF-8 LC_MESSAGES=en_AU.UTF-8
## [7] LC_PAPER=en_AU.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_AU.UTF-8 LC_IDENTIFICATION=C
##
## time zone: Australia/Melbourne
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats4 stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] pkgload_1.3.3 GGally_2.2.0
## [3] beeswarm_0.4.0 gtools_3.9.5
## [5] echarts4r_0.4.5 kableExtra_1.3.4
## [7] topconfects_1.18.0 limma_3.58.1
## [9] eulerr_7.0.0 mitch_1.14.0
## [11] MASS_7.3-60 fgsea_1.28.0
## [13] gplots_3.1.3 DESeq2_1.42.0
## [15] SummarizedExperiment_1.32.0 Biobase_2.62.0
## [17] MatrixGenerics_1.14.0 matrixStats_1.2.0
## [19] GenomicRanges_1.54.1 GenomeInfoDb_1.38.5
## [21] IRanges_2.36.0 S4Vectors_0.40.2
## [23] BiocGenerics_0.48.1 reshape2_1.4.4
## [25] lubridate_1.9.3 forcats_1.0.0
## [27] stringr_1.5.1 dplyr_1.1.4
## [29] purrr_1.0.2 readr_2.1.4
## [31] tidyr_1.3.0 tibble_3.2.1
## [33] ggplot2_3.4.4 tidyverse_2.0.0
## [35] zoo_1.8-12 R.utils_2.12.3
## [37] R.oo_1.25.0 R.methodsS3_1.8.2
##
## loaded via a namespace (and not attached):
## [1] bitops_1.0-7 gridExtra_2.3 rlang_1.1.2
## [4] magrittr_2.0.3 compiler_4.3.2 systemfonts_1.0.5
## [7] vctrs_0.6.5 rvest_1.0.3 pkgconfig_2.0.3
## [10] crayon_1.5.2 fastmap_1.1.1 XVector_0.42.0
## [13] ellipsis_0.3.2 labeling_0.4.3 caTools_1.18.2
## [16] utf8_1.2.4 promises_1.2.1 rmarkdown_2.25
## [19] tzdb_0.4.0 xfun_0.41 cachem_1.0.8
## [22] zlibbioc_1.48.0 jsonlite_1.8.8 highr_0.10
## [25] later_1.3.2 DelayedArray_0.28.0 BiocParallel_1.36.0
## [28] parallel_4.3.2 R6_2.5.1 bslib_0.6.1
## [31] stringi_1.8.3 RColorBrewer_1.1-3 jquerylib_0.1.4
## [34] assertthat_0.2.1 Rcpp_1.0.11 knitr_1.45
## [37] httpuv_1.6.13 Matrix_1.6-4 timechange_0.2.0
## [40] tidyselect_1.2.0 yaml_2.3.8 rstudioapi_0.15.0
## [43] abind_1.4-5 codetools_0.2-19 lattice_0.22-5
## [46] plyr_1.8.9 shiny_1.8.0 withr_2.5.2
## [49] evaluate_0.23 ggstats_0.5.1 xml2_1.3.6
## [52] pillar_1.9.0 KernSmooth_2.23-22 generics_0.1.3
## [55] RCurl_1.98-1.13 hms_1.1.3 munsell_0.5.0
## [58] scales_1.3.0 xtable_1.8-4 glue_1.6.2
## [61] tools_4.3.2 data.table_1.14.10 webshot_0.5.5
## [64] locfit_1.5-9.8 fastmatch_1.1-4 cowplot_1.1.2
## [67] grid_4.3.2 colorspace_2.1-0 GenomeInfoDbData_1.2.11
## [70] cli_3.6.2 fansi_1.0.6 viridisLite_0.4.2
## [73] S4Arrays_1.2.0 svglite_2.1.3 gtable_0.3.4
## [76] sass_0.4.8 digest_0.6.33 SparseArray_1.2.3
## [79] farver_2.1.1 htmlwidgets_1.6.4 htmltools_0.5.7
## [82] lifecycle_1.0.4 httr_1.4.7 statmod_1.5.0
## [85] mime_0.12