Source: https://github.com/markziemann/background
Here we are performing an analysis of some gene expression data to demonstrate the difference between ORA and FCS methods and to highlight the differences caused by improper background gene set use.
The dataset being used is SRP128998 and we are comparing the cells grown in normal glucose condition (control) to the high glucose condition (case).
Data are obtained from http://dee2.io/
suppressPackageStartupMessages({
library("kableExtra")
library("eulerr")
library("gplots")
library("getDEE2")
library("DESeq2")
})
name = "SRP128998"
mdat <- getDEE2Metadata("hsapiens")
samplesheet <- mdat[grep("SRP128998",mdat$SRP_accession),]
samplesheet <- samplesheet[order(samplesheet$SRR_accession),]
samplesheet$trt <- as.factor(c(1,1,1,1,1,1,0,0,0,0,0,0))
samplesheet$VPA <- as.factor(c(0,0,0,1,1,1,0,0,0,1,1,1))
s1 <- subset(samplesheet,VPA==0)
s1 %>%
kbl(caption = "sample sheet") %>%
kable_paper("hover", full_width = F)
SRR_accession | QC_summary | SRX_accession | SRS_accession | SRP_accession | Experiment_title | GEO_series | trt | VPA | |
---|---|---|---|---|---|---|---|---|---|
406940 | SRR6467479 | PASS | SRX3557428 | SRS2830728 | SRP128998 | GSM2932791: high glucose replicate 1; Homo sapiens; RNA-Seq | GSE109140 | 1 | 0 |
406941 | SRR6467480 | PASS | SRX3557429 | SRS2830730 | SRP128998 | GSM2932792: high glucose replicate 2; Homo sapiens; RNA-Seq | GSE109140 | 1 | 0 |
406942 | SRR6467481 | PASS | SRX3557430 | SRS2830729 | SRP128998 | GSM2932793: high glucose replicate 3; Homo sapiens; RNA-Seq | GSE109140 | 1 | 0 |
406946 | SRR6467485 | PASS | SRX3557434 | SRS2830733 | SRP128998 | GSM2932797: low glucose replicate 1; Homo sapiens; RNA-Seq | GSE109140 | 0 | 0 |
406947 | SRR6467486 | PASS | SRX3557435 | SRS2830734 | SRP128998 | GSM2932798: low glucose replicate 2; Homo sapiens; RNA-Seq | GSE109140 | 0 | 0 |
406948 | SRR6467487 | PASS | SRX3557436 | SRS2830735 | SRP128998 | GSM2932799: low glucose replicate 3; Homo sapiens; RNA-Seq | GSE109140 | 0 | 0 |
w <- getDEE2("hsapiens", samplesheet$SRR_accession,
metadata=mdat,legacy = TRUE)
## For more information about DEE2 QC metrics, visit
## https://github.com/markziemann/dee2/blob/master/qc/qc_metrics.md
x <- Tx2Gene(w)
x <- x$Tx2Gene
# table of gene symbols
gt <- w$GeneInfo[,1,drop=FALSE]
gt$accession <- rownames(gt)
# fix gene symbols
rownames(x) <- sapply(strsplit(rownames(x),"\\."),"[[",1)
x <- merge(gt,x,by=0)
rownames(x) <- paste(x$Row.names, x$GeneSymbol)
x <- x[,-c(1:3)]
# counts
x1 <- x[,which(colnames(x) %in% s1$SRR_accession)]
colnames(x1) <- c("HG1","HG2","HG3","NG1","NG2","NG3")
head(x1) %>%
kbl(caption = "counts") %>%
kable_paper("hover", full_width = F)
HG1 | HG2 | HG3 | NG1 | NG2 | NG3 | |
---|---|---|---|---|---|---|
ENSG00000000003 TSPAN6 | 3456.1659 | 3182.2568 | 3967.1044 | 2581.3915 | 4847.4390 | 5116.2807 |
ENSG00000000005 TNMD | 1.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 |
ENSG00000000419 DPM1 | 1712.0049 | 1412.9984 | 1807.9974 | 1200.9997 | 2243.9995 | 2188.0024 |
ENSG00000000457 SCYL3 | 276.2935 | 269.0275 | 295.5115 | 156.4475 | 253.5052 | 342.9771 |
ENSG00000000460 C1orf112 | 324.7927 | 381.3270 | 445.5202 | 168.1013 | 326.5366 | 353.9981 |
ENSG00000000938 FGR | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Here show the number of genes in the annotation set, and those detected above the detection threshold.
# filter out lowly expressed genes
x1 <- x1[which(rowSums(x1)/ncol(x1)>=(10)),]
nrow(x)
## [1] 34947
nrow(x1)
## [1] 14540
Now multidimensional scaling (MDS) plot to show the correlation between the datasets. If the control and case datasets are clustered separately, then it is likely that there will be many differentially expressed genes with FDR<0.05.
plot(cmdscale(dist(t(x1))), xlab="Coordinate 1", ylab="Coordinate 2", pch=19, col=s1$trt, main="MDS")
Now run DESeq2 for control vs case.
y <- DESeqDataSetFromMatrix(countData = round(x1), colData = s1, design = ~ trt)
## converting counts to integer mode
y <- DESeq(y)
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
de <- results(y)
de <- as.data.frame(de[order(de$pvalue),])
#rownames(de) <- sapply(strsplit(rownames(de),"\\."),"[[",1)
head(de) %>% kbl() %>% kable_paper("hover", full_width = F)
baseMean | log2FoldChange | lfcSE | stat | pvalue | padj | |
---|---|---|---|---|---|---|
ENSG00000145050 MANF | 5844.701 | -2.755134 | 0.1532715 | -17.97551 | 0 | 0 |
ENSG00000128228 SDF2L1 | 1678.055 | -2.837724 | 0.1876598 | -15.12164 | 0 | 0 |
ENSG00000149131 SERPING1 | 1346.796 | 2.160230 | 0.1435352 | 15.05018 | 0 | 0 |
ENSG00000044574 HSPA5 | 124977.728 | -2.035024 | 0.1370717 | -14.84642 | 0 | 0 |
ENSG00000179218 CALR | 78846.627 | -2.228966 | 0.1597371 | -13.95396 | 0 | 0 |
ENSG00000090520 DNAJB11 | 6756.034 | -2.139771 | 0.1547021 | -13.83156 | 0 | 0 |
Now let’s have a look at some of the charts showing differential expression. In particular, an MA plot and volcano plot.
maplot <- function(de,contrast_name) {
sig <-subset(de, padj < 0.05 )
up <-rownames(subset(de, padj < 0.05 & log2FoldChange > 0))
dn <-rownames(subset(de, padj < 0.05 & log2FoldChange < 0))
GENESUP <- length(up)
GENESDN <- length(dn)
DET=nrow(de)
SUBHEADER = paste(GENESUP, "up, ", GENESDN, "down", DET, "detected")
ns <-subset(de, padj > 0.05 )
plot(log2(de$baseMean),de$log2FoldChange,
xlab="log2 basemean", ylab="log2 foldchange",
pch=19, cex=0.5, col="dark gray",
main=contrast_name, cex.main=0.7)
points(log2(sig$baseMean),sig$log2FoldChange,
pch=19, cex=0.5, col="red")
mtext(SUBHEADER,cex = 0.7)
}
make_volcano <- function(de,name) {
sig <- subset(de,padj<0.05)
N_SIG=nrow(sig)
N_UP=nrow(subset(sig,log2FoldChange>0))
N_DN=nrow(subset(sig,log2FoldChange<0))
DET=nrow(de)
HEADER=paste(N_SIG,"@5%FDR,", N_UP, "up", N_DN, "dn", DET, "detected")
plot(de$log2FoldChange,-log10(de$padj),cex=0.5,pch=19,col="darkgray",
main=name, xlab="log2 FC", ylab="-log10 pval", xlim=c(-6,6))
mtext(HEADER)
grid()
points(sig$log2FoldChange,-log10(sig$padj),cex=0.5,pch=19,col="red")
}
maplot(de,name)
make_volcano(de,name)
Heatmap of top genes.
colfunc <- colorRampPalette(c("blue", "white", "red"))
topgenes <- rownames(head(de,30))
rpm <- apply(x1,2,function(x) {x / sum(x) * 1e6 } )
top <- rpm[which(rownames(rpm) %in% topgenes),]
heatmap.2(top,trace="none",col=colfunc(25),scale="row", margins = c(10,20))
saveRDS(de,"workflow.Rds")
sessionInfo()
## R version 4.4.0 (2024-04-24)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 22.04.4 LTS
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
## LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so; LAPACK version 3.10.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: Etc/UTC
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats4 stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] DESeq2_1.44.0 SummarizedExperiment_1.34.0
## [3] Biobase_2.64.0 MatrixGenerics_1.16.0
## [5] matrixStats_1.3.0 GenomicRanges_1.56.0
## [7] GenomeInfoDb_1.40.1 IRanges_2.38.0
## [9] S4Vectors_0.42.0 BiocGenerics_0.50.0
## [11] getDEE2_1.14.0 gplots_3.1.3.1
## [13] eulerr_7.0.2 kableExtra_1.4.0
##
## loaded via a namespace (and not attached):
## [1] gtable_0.3.5 xfun_0.43 bslib_0.7.0
## [4] ggplot2_3.5.1 caTools_1.18.2 lattice_0.22-6
## [7] vctrs_0.6.5 tools_4.4.0 bitops_1.0-7
## [10] parallel_4.4.0 fansi_1.0.6 tibble_3.2.1
## [13] highr_0.10 pkgconfig_2.0.3 Matrix_1.7-0
## [16] KernSmooth_2.23-22 lifecycle_1.0.4 GenomeInfoDbData_1.2.12
## [19] compiler_4.4.0 stringr_1.5.1 munsell_0.5.1
## [22] htm2txt_2.2.2 codetools_0.2-20 htmltools_0.5.8.1
## [25] sass_0.4.9 yaml_2.3.8 pillar_1.9.0
## [28] crayon_1.5.2 jquerylib_0.1.4 BiocParallel_1.38.0
## [31] cachem_1.0.8 DelayedArray_0.30.1 abind_1.4-5
## [34] gtools_3.9.5 locfit_1.5-9.9 digest_0.6.35
## [37] stringi_1.8.4 fastmap_1.1.1 grid_4.4.0
## [40] colorspace_2.1-0 cli_3.6.2 SparseArray_1.4.8
## [43] magrittr_2.0.3 S4Arrays_1.4.1 utf8_1.2.4
## [46] scales_1.3.0 UCSC.utils_1.0.0 rmarkdown_2.26
## [49] XVector_0.44.0 httr_1.4.7 evaluate_0.23
## [52] knitr_1.46 viridisLite_0.4.2 rlang_1.1.3
## [55] Rcpp_1.0.12 glue_1.7.0 xml2_1.3.6
## [58] svglite_2.1.3 rstudioapi_0.16.0 jsonlite_1.8.8
## [61] R6_2.5.1 systemfonts_1.0.6 zlibbioc_1.50.0