Introduction

In this analysis I am performing differential expression and pathway analysis on seasol and control plants at all timepoints (0, 3, 6, 12 and 24 hrs).

Methods

The RNA-seq data is already deposited at SRA, so the raw data has been processed and incorporated into the DEE2 database, obtainable with the SRA project accession number SRP253869 (Ziemann et al, 2019). After obtaining processed data from DEE2 using the R/Bioconductor package, it will undergo differential expression analysis at each timepoint using DESeq2 (Love et al, 2014). Next, the differential expression profile underwent enrichment analysis of Mapman gene sets using the mitch software package (Kaspi & Ziemann 2020). Mitch allows to perform multi-dimensional enrichment analysis, so control-treatment enrichment analysis ca be performed at all timepoints at once.

suppressPackageStartupMessages({
    library("getDEE2")
    library("reshape2")
    library("gplots")
    library("DESeq2")
    library("mitch")
    library("edgeR")
    library("RColorBrewer")
    library("gplots")
  })

Set up the sample sheet

Using sample information from dee2.io.

md <- getDEE2Metadata("athaliana")

md <- md[which(md$SRP_accession=="SRP253869"),]

ctrl <- grep("H-",md$Library_name)

s80 <- grep("S80",md$Library_name)

md <- md[c(ctrl,s80),]

timepoint <- sapply(strsplit(md$Library_name, "-"),"[[",2)

timepoint <- sapply(strsplit(timepoint, "_"),"[[",1)

md$timepoint <- timepoint

md$trt <- as.numeric(grepl("S80",md$Library_name))

md
##      SRR_accession QC_summary SRX_accession SRS_accession SRP_accession
## 8000   SRR11404254       PASS    SRX7983043    SRS6367595     SRP253869
## 8001   SRR11404255       PASS    SRX7983042    SRS6367596     SRP253869
## 8002   SRR11404256       PASS    SRX7983041    SRS6368266     SRP253869
## 8003   SRR11404257       PASS    SRX7983040    SRS6368265     SRP253869
## 8014   SRR11404268       PASS    SRX7983029    SRS6367587     SRP253869
## 8025   SRR11404279       PASS    SRX7983018    SRS6367573     SRP253869
## 8035   SRR11404290       PASS    SRX7983007    SRS6367565     SRP253869
## 8046   SRR11404301       PASS    SRX7982996    SRS6367551     SRP253869
## 8052   SRR11404307       PASS    SRX7982990    SRS6367545     SRP253869
## 8053   SRR11404308       PASS    SRX7982989    SRS6367544     SRP253869
## 8054   SRR11404309       PASS    SRX7982988    SRS6367543     SRP253869
## 8055   SRR11404310       PASS    SRX7982987    SRS6367542     SRP253869
## 8056   SRR11404311       PASS    SRX7982986    SRS6367541     SRP253869
## 8057   SRR11404312       PASS    SRX7982985    SRS6367540     SRP253869
## 8058   SRR11404313       PASS    SRX7982984    SRS6367539     SRP253869
## 8004   SRR11404258       PASS    SRX7983039    SRS6368264     SRP253869
## 8005   SRR11404259       PASS    SRX7983038    SRS6368262     SRP253869
## 8006   SRR11404260  WARN(5,7)    SRX7983037    SRS6367591     SRP253869
## 8007   SRR11404261       PASS    SRX7983036    SRS6368263     SRP253869
## 8008   SRR11404262       PASS    SRX7983035    SRS6367590     SRP253869
## 8009   SRR11404263       PASS    SRX7983034    SRS6367589     SRP253869
## 8010   SRR11404264       PASS    SRX7983033    SRS6367593     SRP253869
## 8011   SRR11404265       PASS    SRX7983032    SRS6367592     SRP253869
## 8012   SRR11404266    WARN(8)    SRX7983031    SRS6367594     SRP253869
## 8013   SRR11404267       PASS    SRX7983030    SRS6367588     SRP253869
## 8015   SRR11404269       PASS    SRX7983028    SRS6367585     SRP253869
## 8016   SRR11404270       PASS    SRX7983027    SRS6367582     SRP253869
## 8017   SRR11404271       PASS    SRX7983026    SRS6367581     SRP253869
## 8018   SRR11404272       PASS    SRX7983025    SRS6367580     SRP253869
## 8019   SRR11404273       PASS    SRX7983024    SRS6367579     SRP253869
##       Sample_name GEO_series Library_name timepoint trt
## 8000   H-12hpi_R1         NA   H-12hpi_R1     12hpi   0
## 8001    H-6hpi_R3         NA    H-6hpi_R3      6hpi   0
## 8002    H-6hpi_R2         NA    H-6hpi_R2      6hpi   0
## 8003    H-6hpi_R1         NA    H-6hpi_R1      6hpi   0
## 8014    H-3hpi_R3         NA    H-3hpi_R3      3hpi   0
## 8025    H-3hpi_R2         NA    H-3hpi_R2      3hpi   0
## 8035    H-3hpi_R1         NA    H-3hpi_R1      3hpi   0
## 8046    H-0hpi_R3         NA    H-0hpi_R3      0hpi   0
## 8052   H-24hpi_R3         NA   H-24hpi_R3     24hpi   0
## 8053   H-24hpi_R2         NA   H-24hpi_R2     24hpi   0
## 8054   H-24hpi_R1         NA   H-24hpi_R1     24hpi   0
## 8055   H-12hpi_R3         NA   H-12hpi_R3     12hpi   0
## 8056   H-12hpi_R2         NA   H-12hpi_R2     12hpi   0
## 8057    H-0hpi_R2         NA    H-0hpi_R2      0hpi   0
## 8058    H-0hpi_R1         NA    H-0hpi_R1      0hpi   0
## 8004 S80-24hpi_R3         NA S80-24hpi_R3     24hpi   1
## 8005 S80-24hpi_R2         NA S80-24hpi_R2     24hpi   1
## 8006 S80-24hpi_R1         NA S80-24hpi_R1     24hpi   1
## 8007 S80-12hpi_R3         NA S80-12hpi_R3     12hpi   1
## 8008 S80-12hpi_R2         NA S80-12hpi_R2     12hpi   1
## 8009 S80-12hpi_R1         NA S80-12hpi_R1     12hpi   1
## 8010  S80-6hpi_R3         NA  S80-6hpi_R3      6hpi   1
## 8011  S80-6hpi_R2         NA  S80-6hpi_R2      6hpi   1
## 8012  S80-6hpi_R1         NA  S80-6hpi_R1      6hpi   1
## 8013  S80-3hpi_R3         NA  S80-3hpi_R3      3hpi   1
## 8015  S80-3hpi_R2         NA  S80-3hpi_R2      3hpi   1
## 8016  S80-3hpi_R1         NA  S80-3hpi_R1      3hpi   1
## 8017  S80-0hpi_R3         NA  S80-0hpi_R3      0hpi   1
## 8018  S80-0hpi_R2         NA  S80-0hpi_R2      0hpi   1
## 8019  S80-0hpi_R1         NA  S80-0hpi_R1      0hpi   1

Fetch dataset

Obtaining the RNA expression data from dee2.io.

# fetch the expresion data
x <- getDEE2(species="athaliana", SRRvec = md$SRR_accession , legacy = TRUE)
## For more information about DEE2 QC metrics, visit
##     https://github.com/markziemann/dee2/blob/master/qc/qc_metrics.md
# collapse tx wise expression counts to genes
x <- Tx2Gene(x)

Here, I’m running an MDS plot to see the overall variation in the expression data.

samplegroups <- factor(sapply(strsplit(md$Library_name,"_"),"[[",1))

colour_palette <- brewer.pal(n = length(levels(samplegroups)), name = "Paired")

colours <- colour_palette[as.integer(factor(samplegroups))]

plot(1,axes = FALSE,xlab="",ylab="",main="MDS by ART type")

legend("center",legend=levels(samplegroups),pch=16,cex=1.2,col=colour_palette)

mydist <- plotMDS(x$Tx2Gene, labels=colnames(x$Tx2Gene),col=colours,main="MDS plot")

# split into different objects for analysis
ss0 <- md[which(md$timepoint=="0hpi"),]
x0 <- x$Tx2Gene[,which(colnames(x$Tx2Gene) %in% ss0$SRR_accession)]
x0 <- x0[which(rowMeans(x0)>10),]
x0 <- round(x0)

ss3 <- md[which(md$timepoint=="3hpi"),]
x3 <- x$Tx2Gene[,which(colnames(x$Tx2Gene) %in% ss3$SRR_accession)]
x3 <- x3[which(rowMeans(x3)>10),]
x3 <- round(x3)

ss6 <- md[which(md$timepoint=="6hpi"),]
x6 <- x$Tx2Gene[,which(colnames(x$Tx2Gene) %in% ss6$SRR_accession)]
x6 <- x6[which(rowMeans(x6)>10),]
x6 <- round(x6)

ss12 <- md[which(md$timepoint=="12hpi"),]
x12 <- x$Tx2Gene[,which(colnames(x$Tx2Gene) %in% ss12$SRR_accession)]
x12 <- x12[which(rowMeans(x12)>10),]
x12 <- round(x12)

ss24 <- md[which(md$timepoint=="24hpi"),]
x24 <- x$Tx2Gene[,which(colnames(x$Tx2Gene) %in% ss24$SRR_accession)]
x24 <- x24[which(rowMeans(x24)>10),]
x24 <- round(x24)

Differential expression

Now it is time to run differential expression analysis.

# t=0
dds <- DESeqDataSetFromMatrix(countData=x0, colData = ss0, design = ~ trt)
## converting counts to integer mode
##   the design formula contains one or more numeric variables with integer values,
##   specifying a model with increasing fold change for higher values.
##   did you mean for this to be a factor? if so, first convert
##   this variable to a factor using the factor() function
dds <- DESeq(dds)
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
de <- DESeq2::results(dds)
de0 <- as.data.frame(de[order(de$pvalue),])
head(de0,20)
##             baseMean log2FoldChange      lfcSE       stat       pvalue
## AT2G47450  3515.3630     -1.1462579 0.10558229 -10.856535 1.856607e-27
## AT2G22510  1188.1907     -1.5813409 0.16643308  -9.501362 2.071633e-21
## AT1G65970   420.4240      1.8116079 0.21189127   8.549705 1.234033e-17
## AT3G11510  6089.2093      0.8163242 0.09702351   8.413675 3.973605e-17
## AT2G32870  1201.6105     -0.8599037 0.10408554  -8.261510 1.438414e-16
## AT5G64100  3863.7325      0.9059243 0.11026448   8.215921 2.105416e-16
## AT3G22230  3382.0461      0.7492148 0.09701775   7.722452 1.141132e-14
## AT5G02870  7622.3840      0.6431751 0.08465480   7.597621 3.016242e-14
## AT4G09320  6532.5874      0.6684532 0.08855509   7.548445 4.404851e-14
## AT3G14440   643.4797      1.2614783 0.16872374   7.476590 7.627563e-14
## AT3G09735  1212.4507      0.7312255 0.09813692   7.451074 9.258328e-14
## AT2G44310  1536.7306      0.7109439 0.09618455   7.391457 1.452288e-13
## AT2G18328   687.4280     -1.0539247 0.14363968  -7.337281 2.179769e-13
## AT3G53430  5206.4546      0.6073020 0.08385435   7.242343 4.409993e-13
## AT4G38080  3013.3180     -1.4314495 0.19840915  -7.214634 5.407912e-13
## AT4G20150  3116.1585      0.6631730 0.09435802   7.028264 2.091192e-12
## AT5G48490  1035.1869     -1.2415864 0.17708729  -7.011155 2.363590e-12
## AT1G64370  5548.8727     -1.2789668 0.18261103  -7.003776 2.491535e-12
## AT5G54270 14902.9174     -1.2815541 0.18675104  -6.862367 6.772893e-12
## AT1G55330  2370.9362      0.6181038 0.09066543   6.817415 9.269333e-12
##                   padj
## AT2G47450 3.870841e-23
## AT2G22510 2.159574e-17
## AT1G65970 8.576116e-14
## AT3G11510 2.071142e-13
## AT2G32870 5.997899e-13
## AT5G64100 7.315968e-13
## AT3G22230 3.398780e-11
## AT5G02870 7.860705e-11
## AT4G09320 1.020408e-10
## AT3G14440 1.590271e-10
## AT3G09735 1.754790e-10
## AT2G44310 2.523229e-10
## AT2G18328 3.495846e-10
## AT3G53430 6.567425e-10
## AT4G38080 7.516637e-10
## AT4G20150 2.724954e-09
## AT5G48490 2.885890e-09
## AT1G64370 2.885890e-09
## AT5G54270 7.432003e-09
## AT1G55330 9.303737e-09
write.table(de0,"h_vs_80_0hpi.tsv",sep="\t",quote=FALSE)

# t=3
dds <- DESeqDataSetFromMatrix(countData=x3, colData = ss3, design = ~ trt)
## converting counts to integer mode
##   the design formula contains one or more numeric variables with integer values,
##   specifying a model with increasing fold change for higher values.
##   did you mean for this to be a factor? if so, first convert
##   this variable to a factor using the factor() function
dds <- DESeq(dds)
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
de <- DESeq2::results(dds)
de3 <- as.data.frame(de[order(de$pvalue),])
head(de3,20)
##             baseMean log2FoldChange     lfcSE       stat       pvalue
## AT1G54410 11826.6026      -2.182179 0.1210430 -18.028134 1.171796e-72
## AT1G74250  1212.6322      -1.567921 0.1239941 -12.645129 1.190284e-36
## AT1G15340  2087.1364      -1.682312 0.1400228 -12.014559 2.979531e-33
## AT1G56660   601.4467      -3.815742 0.3592626 -10.621040 2.378958e-26
## AT2G44200   615.5771      -1.745086 0.1726302 -10.108811 5.049317e-24
## AT3G49601  1078.5561      -1.806036 0.1812096  -9.966555 2.135064e-23
## AT5G53800   545.4112      -1.857494 0.1870115  -9.932515 3.005766e-23
## AT1G47970  1070.5804      -1.414581 0.1434413  -9.861739 6.098371e-23
## AT1G15200  1338.6733      -1.256790 0.1277508  -9.837826 7.736478e-23
## AT5G63320  1249.8486      -1.265292 0.1298561  -9.743802 1.960777e-22
## AT1G20450  7681.6078      -1.537695 0.1590940  -9.665323 4.232820e-22
## AT2G05510  1444.3495      -3.554852 0.3712511  -9.575329 1.015335e-21
## AT3G51880  1254.4222      -1.192470 0.1247362  -9.559934 1.178322e-21
## AT5G55660  1957.5396      -1.871399 0.1966831  -9.514793 1.820743e-21
## AT2G36780   539.3108      -2.830050 0.3005426  -9.416468 4.665168e-21
## AT1G26255   112.7135      -4.099526 0.4369760  -9.381581 6.499062e-21
## AT2G43570   347.9389      -1.727088 0.1844085  -9.365555 7.565163e-21
## AT1G64330   635.1913      -1.495559 0.1601681  -9.337437 9.869430e-21
## AT2G38250   124.6096      -2.649332 0.2921541  -9.068269 1.209229e-19
## AT1G16210  1532.9289      -1.327241 0.1490090  -8.907120 5.237549e-19
##                   padj
## AT1G54410 2.452100e-68
## AT1G74250 1.245394e-32
## AT1G15340 2.078322e-29
## AT1G56660 1.244552e-22
## AT2G44200 2.113240e-20
## AT3G49601 7.446393e-20
## AT5G53800 8.985522e-20
## AT1G47970 1.595181e-19
## AT1G15200 1.798817e-19
## AT5G63320 4.103122e-19
## AT1G20450 8.052363e-19
## AT2G05510 1.770575e-18
## AT3G51880 1.896736e-18
## AT5G55660 2.721491e-18
## AT2G36780 6.508221e-18
## AT1G26255 8.499961e-18
## AT2G43570 9.312270e-18
## AT1G64330 1.147376e-17
## AT2G38250 1.331806e-16
## AT1G16210 5.480048e-16
write.table(de3,"h_vs_80_3hpi.tsv",sep="\t",quote=FALSE)

# t=6
dds <- DESeqDataSetFromMatrix(countData=x6, colData = ss6, design = ~ trt)
## converting counts to integer mode
##   the design formula contains one or more numeric variables with integer values,
##   specifying a model with increasing fold change for higher values.
##   did you mean for this to be a factor? if so, first convert
##   this variable to a factor using the factor() function
dds <- DESeq(dds)
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
de <- DESeq2::results(dds)
de6 <- as.data.frame(de[order(de$pvalue),])
head(de6,20)
##             baseMean log2FoldChange     lfcSE      stat       pvalue
## AT1G72540  142.85512     -2.3101801 0.2530965 -9.127664 6.999298e-20
## AT1G19180 2214.85770     -1.4554270 0.1620743 -8.980001 2.707652e-19
## AT4G21840  479.36539     -1.9056667 0.2259958 -8.432310 3.389064e-17
## AT4G37710   93.21029     -3.1686164 0.3905549 -8.113115 4.933847e-16
## AT3G44860  304.16150     -1.9406993 0.2536584 -7.650837 1.996759e-14
## AT4G21830 3012.65933     -1.1209035 0.1481791 -7.564519 3.893029e-14
## AT3G53600  150.86840     -2.6294354 0.3481969 -7.551576 4.300241e-14
## AT1G80840  401.88292     -1.8017239 0.2455351 -7.337950 2.168909e-13
## AT5G07460 2961.02839     -0.8036362 0.1102874 -7.286743 3.175375e-13
## AT1G32970  231.64817     -2.0099810 0.2771139 -7.253266 4.068392e-13
## AT1G01680  291.19659     -1.3069886 0.1893211 -6.903554 5.071737e-12
## AT1G69930  464.94766     -2.2791447 0.3335972 -6.832025 8.372420e-12
## AT1G28190  467.42813     -1.2085472 0.1812617 -6.667416 2.603466e-11
## AT5G37840   90.97231     -2.5658963 0.3863179 -6.641930 3.096022e-11
## AT2G37970  684.14403     -0.9703772 0.1466028 -6.619090 3.614176e-11
## AT5G67340  815.10141     -1.2074458 0.1842801 -6.552230 5.668419e-11
## AT1G19020  609.53606     -1.4045477 0.2150684 -6.530702 6.546208e-11
## AT1G50010 9954.48893      0.6753116 0.1059865  6.371678 1.869711e-10
## AT1G07135  662.21627     -1.3918891 0.2202109 -6.320709 2.603653e-10
## AT4G22610  218.69455     -2.3237036 0.3719143 -6.247955 4.158613e-10
##                   padj
## AT1G72540 1.484761e-15
## AT1G19180 2.871872e-15
## AT4G21840 2.396407e-13
## AT4G37710 2.616542e-12
## AT3G44860 8.471450e-11
## AT4G21830 1.303157e-10
## AT3G53600 1.303157e-10
## AT1G80840 5.751132e-10
## AT5G07460 7.484359e-10
## AT1G32970 8.630280e-10
## AT1G01680 9.780613e-09
## AT1G69930 1.480035e-08
## AT1G28190 4.248256e-08
## AT5G37840 4.691136e-08
## AT2G37970 5.111168e-08
## AT5G67340 7.515261e-08
## AT1G19020 8.168513e-08
## AT1G50010 2.203455e-07
## AT1G07135 2.906910e-07
## AT4G22610 4.410833e-07
write.table(de6,"h_vs_80_6hpi.tsv",sep="\t",quote=FALSE)

# t=12
dds <- DESeqDataSetFromMatrix(countData=x12, colData = ss12, design = ~ trt)
## converting counts to integer mode
##   the design formula contains one or more numeric variables with integer values,
##   specifying a model with increasing fold change for higher values.
##   did you mean for this to be a factor? if so, first convert
##   this variable to a factor using the factor() function
dds <- DESeq(dds)
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
de <- DESeq2::results(dds)
de12 <- as.data.frame(de[order(de$pvalue),])
head(de12,20)
##            baseMean log2FoldChange     lfcSE      stat       pvalue
## ATCG00520  373.4261       5.156364 0.5053982 10.202578 1.930781e-24
## ATCG00130  409.5522       4.153903 0.4224269  9.833423 8.082395e-23
## ATCG01070  131.1675       4.361646 0.4481186  9.733241 2.175492e-22
## ATCG00040  986.1424       4.089570 0.4309112  9.490517 2.298921e-21
## ATCG01090  272.4529       3.752220 0.4012476  9.351381 8.651036e-21
## ATCG00500  317.6603       4.962308 0.5433310  9.133122 6.655179e-20
## ATCG01050  252.1060       3.751759 0.4200319  8.932083 4.180632e-19
## ATCG00140  226.5290       4.024194 0.4601614  8.745179 2.226619e-18
## AT1G60640  293.4626      -1.703560 0.1993857 -8.544041 1.296080e-17
## ATCG01080  225.0500       3.881927 0.4667680  8.316608 9.051620e-17
## ATCG01060  133.9059       3.881125 0.4682476  8.288615 1.145747e-16
## ATCG01100  775.8392       3.075454 0.3746821  8.208169 2.245865e-16
## ATCG00540  607.1462       3.636501 0.4447703  8.176131 2.931024e-16
## ATCG01010  100.4831       4.328056 0.5346975  8.094402 5.754647e-16
## ATCG00650  358.4868       2.490750 0.3179340  7.834174 4.719343e-15
## ATCG00120  775.4356       3.884885 0.5080366  7.646861 2.059453e-14
## ATCG00280 1406.6448       1.826573 0.2395112  7.626253 2.416751e-14
## ATCG01110  685.9337       1.785154 0.2380655  7.498584 6.451115e-14
## ATCG00530  456.7897       3.476619 0.4693324  7.407584 1.286214e-13
## AT5G05210  599.9259      -1.265011 0.1759363 -7.190165 6.471285e-13
##                   padj
## ATCG00520 3.900758e-20
## ATCG00130 8.164432e-19
## ATCG01070 1.465049e-18
## ATCG00040 1.161127e-17
## ATCG01090 3.495537e-17
## ATCG00500 2.240910e-16
## ATCG01050 1.206590e-15
## ATCG00140 5.623048e-15
## AT1G60640 2.909411e-14
## ATCG01080 1.828699e-13
## ATCG01060 2.104320e-13
## ATCG01100 3.781101e-13
## ATCG00540 4.555037e-13
## ATCG01010 8.304367e-13
## ATCG00650 6.356326e-12
## ATCG00120 2.600445e-11
## ATCG00280 2.872095e-11
## ATCG01110 7.240660e-11
## ATCG00530 1.367651e-10
## AT5G05210 6.536968e-10
write.table(de12,"h_vs_80_12hpi.tsv",sep="\t",quote=FALSE)

# t=24
dds <- DESeqDataSetFromMatrix(countData=x24, colData = ss24, design = ~ trt)
## converting counts to integer mode
##   the design formula contains one or more numeric variables with integer values,
##   specifying a model with increasing fold change for higher values.
##   did you mean for this to be a factor? if so, first convert
##   this variable to a factor using the factor() function
dds <- DESeq(dds)
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
de <- DESeq2::results(dds)
de24 <- as.data.frame(de[order(de$pvalue),])
head(de24,20)
##             baseMean log2FoldChange     lfcSE      stat       pvalue
## AT3G12900  108.78770      4.8830340 0.3781476 12.913037 3.800124e-38
## AT4G33070  536.08319      2.6331070 0.2654192  9.920561 3.388479e-23
## AT4G10250   69.77899      3.8454252 0.3918645  9.813151 9.883300e-23
## AT4G33560   86.40859      2.6102513 0.2850434  9.157381 5.317198e-20
## AT5G42600  144.54765     -3.4506751 0.4179198 -8.256787 1.496458e-16
## AT4G19690  763.61494      2.5395300 0.3176475  7.994805 1.297786e-15
## AT2G28400  465.56993      1.5526272 0.1951704  7.955238 1.787868e-15
## AT4G13580  240.02838      1.7043523 0.2324557  7.331946 2.268350e-13
## AT4G12550 2321.08448     -1.4047243 0.1952966 -7.192773 6.348856e-13
## AT3G50640  169.92943      1.6234357 0.2272605  7.143501 9.098301e-13
## AT2G29380   65.91844      2.7881817 0.3916457  7.119143 1.086001e-12
## AT5G19600  110.97431     -2.1696098 0.3078376 -7.047904 1.816325e-12
## AT4G12545 1560.47562     -1.2123427 0.1725200 -7.027260 2.106282e-12
## AT1G61340  238.87504      1.8640467 0.2692809  6.922314 4.443259e-12
## AT5G64310 1181.99883      0.9617894 0.1389806  6.920313 4.506483e-12
## AT5G46730  717.02497     -1.3426192 0.1950263 -6.884299 5.807272e-12
## AT2G37770  742.06957      2.7356917 0.4045853  6.761718 1.363651e-11
## AT1G73120   40.73863      3.4719629 0.5173804  6.710658 1.937494e-11
## AT1G35625   41.83925     -2.4204555 0.3663416 -6.607099 3.919233e-11
## AT3G24020  256.66263      1.2694019 0.1922026  6.604500 3.988612e-11
##                   padj
## AT3G12900 7.798994e-34
## AT4G33070 3.477087e-19
## AT4G10250 6.761166e-19
## AT4G33560 2.728121e-16
## AT5G42600 6.142360e-13
## AT4G19690 4.439077e-12
## AT2G28400 5.241774e-12
## AT4G13580 5.819168e-10
## AT4G12550 1.447751e-09
## AT3G50640 1.867244e-09
## AT2G29380 2.026181e-09
## AT5G19600 3.106370e-09
## AT4G12545 3.325172e-09
## AT1G61340 6.165769e-09
## AT5G64310 6.165769e-09
## AT5G46730 7.448915e-09
## AT2G37770 1.646248e-08
## AT1G73120 2.209066e-08
## AT1G35625 4.092914e-08
## AT3G24020 4.092914e-08
write.table(de24,"h_vs_80_24hpi.tsv",sep="\t",quote=FALSE)

Now run an MDS plot to visualise the gene expression differences at each timepoint.

maplot <- function(de,contrast_name) {
  sig <-subset(de, padj < 0.05 )
  up <-rownames(subset(de, padj < 0.05 & log2FoldChange > 0))
  dn <-rownames(subset(de, padj < 0.05 & log2FoldChange < 0))
  GENESUP <- length(up)
  GENESDN <- length(dn)
  SUBHEADER = paste(GENESUP, "up, ", GENESDN, "down")
  ns <-subset(de, padj > 0.05 )
  plot(log2(de$baseMean),de$log2FoldChange, 
       xlab="log2 basemean", ylab="log2 foldchange",
       pch=19, cex=0.5, col="dark gray",
       main=contrast_name, cex.main=0.7)
  points(log2(sig$baseMean),sig$log2FoldChange,
         pch=19, cex=0.5, col="red")
  mtext(SUBHEADER,cex = 0.7)
}

maplot(de0, contrast_name = "0hpi")

maplot(de3, contrast_name = "3hpi")

maplot(de6, contrast_name = "6hpi")

maplot(de12, contrast_name = "12hpi")

maplot(de24, contrast_name = "24hpi")

Enrichment analysis

gsets <- gmt_import("Ath_AGI_LOCUS_TAIR10_Aug2012.txt.gmt")

xl <- list("de0"=de0,"de3"=de3,"de6"=de6,"de12"=de12,"de24"=de24)

y <- mitch_import(xl,DEtype = "DESeq2")
## Note: Mean no. genes in input = 20870.6
## Note: no. genes in output = 20269
## Note: estimated proportion of input genes in output = 0.971
# prioritisation by effect size
capture.output(
    res <- mitch_calc(y,gsets,priority="effect")
    , file = "/dev/null", append = FALSE,
    type = c("output", "message"), split = FALSE)
## Note: Enrichments with large effect sizes may not be 
##             statistically significant.
n=50
head(res$enrichment_result,n)
##                                                                                                set
## 74              RNA_REGULATION_OF_TRANSCRIPTION_TRIHELIX,_TRIPLE-HELIX_TRANSCRIPTION_FACTOR_FAMILY
## 69                       RNA_REGULATION_OF_TRANSCRIPTION_G2-LIKE_TRANSCRIPTION_FACTOR_FAMILY,_GARP
## 34                                                  NOT_ASSIGNED_NO_ONTOLOGY_GLYCINE_RICH_PROTEINS
## 96                                      TRANSPORT_METABOLITE_TRANSPORTERS_AT_THE_ENVELOPE_MEMBRANE
## 26                           MITOCHONDRIAL_ELECTRON_TRANSPORT_/_ATP_SYNTHESIS_CYTOCHROME_C_OXIDASE
## 95                                                                           TRANSPORT_AMINO_ACIDS
## 99                                                                                TRANSPORT_SUGARS
## 63                                                                         RNA_PROCESSING_SPLICING
## 77                                                                               RNA_TRANSCRIPTION
## 42                                                                    PROTEIN_DEGRADATION_AAA_TYPE
## 53              PROTEIN_POSTRANSLATIONAL_MODIFICATION_KINASE_RECEPTOR_LIKE_CYTOPLASMATIC_KINASE_VI
## 32                                          NOT_ASSIGNED_NO_ONTOLOGY_DC1_DOMAIN_CONTAINING_PROTEIN
## 37                                                    NOT_ASSIGNED_NO_ONTOLOGY_PROLINE_RICH_FAMILY
## 93                                                       STRESS_BIOTIC_PR-PROTEINS_PLANT_DEFENSINS
## 44                                                           PROTEIN_DEGRADATION_CYSTEINE_PROTEASE
## 83                                               SIGNALLING_RECEPTOR_KINASES_LEUCINE_RICH_REPEAT_I
## 55                                                                    PROTEIN_SYNTHESIS_ELONGATION
## 1                                                                                       CELL_CYCLE
## 2                                                                                    CELL_DIVISION
## 85                                     SIGNALLING_RECEPTOR_KINASES_LEUCINE_RICH_REPEAT_VIII_VIII-2
## 98                                                                                  TRANSPORT_MISC
## 19                                   MISC_INVERTASE/PECTIN_METHYLESTERASE_INHIBITOR_FAMILY_PROTEIN
## 71                          RNA_REGULATION_OF_TRANSCRIPTION_MYB_DOMAIN_TRANSCRIPTION_FACTOR_FAMILY
## 84                                             SIGNALLING_RECEPTOR_KINASES_LEUCINE_RICH_REPEAT_III
## 57 PROTEIN_SYNTHESIS_RIBOSOME_BIOGENESIS_PRE-RRNA_PROCESSING_AND_MODIFICATIONS_METHYLOTRANSFERASES
## 89                                                                             STRESS_ABIOTIC_HEAT
## 43                                                          PROTEIN_DEGRADATION_ASPARTATE_PROTEASE
## 46                                                                   PROTEIN_DEGRADATION_UBIQUITIN
## 82                                       SIGNALLING_RECEPTOR_KINASES_CATHARANTHUS_ROSEUS-LIKE_RLK1
## 54             PROTEIN_POSTRANSLATIONAL_MODIFICATION_KINASE_RECEPTOR_LIKE_CYTOPLASMATIC_KINASE_VII
## 40                                                  PROTEIN_AA_ACTIVATION_PSEUDOURIDYLATE_SYNTHASE
## 87                                           SIGNALLING_RECEPTOR_KINASES_S-LOCUS_GLYCOPROTEIN_LIKE
## 92                                                                       STRESS_BIOTIC_PR-PROTEINS
## 5                                      CELL_WALL_DEGRADATION_PECTATE_LYASES_AND_POLYGALACTURONASES
## 76                                                                                 RNA_RNA_BINDING
## 36                      NOT_ASSIGNED_NO_ONTOLOGY_PENTATRICOPEPTIDE_(PPR)_REPEAT-CONTAINING_PROTEIN
## 72                         RNA_REGULATION_OF_TRANSCRIPTION_MYB-RELATED_TRANSCRIPTION_FACTOR_FAMILY
## 86                                                                SIGNALLING_RECEPTOR_KINASES_MISC
## 64                                  RNA_REGULATION_OF_TRANSCRIPTION_B3_TRANSCRIPTION_FACTOR_FAMILY
## 38                                         NOT_ASSIGNED_NO_ONTOLOGY_TETRATRICOPEPTIDE_REPEAT_(TPR)
## 49                                                         PROTEIN_DEGRADATION_UBIQUITIN_PROTEASOM
## 27                                      MITOCHONDRIAL_ELECTRON_TRANSPORT_/_ATP_SYNTHESIS_F1-ATPASE
## 8                                                                DNA_SYNTHESIS/CHROMATIN_STRUCTURE
## 70                                           RNA_REGULATION_OF_TRANSCRIPTION_GENERAL_TRANSCRIPTION
## 20                                                                                      MISC_MISC2
## 18                                                                          MISC_GDSL-MOTIF_LIPASE
## 60                                                                             REDOX_GLUTAREDOXINS
## 73                                RNA_REGULATION_OF_TRANSCRIPTION_PUTATIVE_TRANSCRIPTION_REGULATOR
## 48                                                       PROTEIN_DEGRADATION_UBIQUITIN_E3_SCF_FBOX
## 28                 MITOCHONDRIAL_ELECTRON_TRANSPORT_/_ATP_SYNTHESIS_NADH-DH_LOCALISATION_NOT_CLEAR
##    setSize      pMANOVA       s.de0         s.de3       s.de6      s.de12
## 74      18 1.191197e-06 -0.47352943 -0.7416917683 -0.38007451 -0.50358556
## 69      11 1.548926e-03 -0.70051786 -0.3981816387 -0.63430833 -0.31539504
## 34      35 1.913024e-13 -0.43893305 -0.7304056821 -0.36888123 -0.35522670
## 96      14 1.377235e-03  0.09918539  0.6054307578  0.47777268  0.47662306
## 26      11 1.007759e-02  0.42553783  0.3144616268  0.59825523  0.39541730
## 95      13 1.381460e-03  0.05231498  0.6091110706  0.28877294  0.56266709
## 99      22 1.651872e-04  0.18427870  0.5618610164  0.38184782  0.49549877
## 63      19 3.956646e-03 -0.26745159 -0.4248473034 -0.25881741 -0.37886420
## 77      15 3.081537e-02 -0.22977519 -0.3875382640 -0.41957803 -0.19963793
## 42      24 4.515506e-06  0.07902774 -0.4675763563 -0.46362065 -0.27597349
## 53      11 2.750362e-03 -0.32616520  0.3625772983  0.02739210  0.49703372
## 32      84 4.088214e-24 -0.16894913  0.2412210859  0.17430907  0.56641070
## 37      34 2.876719e-13 -0.60638091  0.0996962165 -0.22614573  0.06511141
## 93      10 3.577062e-02  0.44158152  0.3431758725  0.36555605  0.06193790
## 44      12 2.440611e-02 -0.16420661 -0.3442431423 -0.55537181 -0.12885258
## 83      14 3.679214e-04 -0.21636986  0.0826039426  0.09485489  0.60895017
## 55      15 1.164400e-03  0.54439288  0.0999967085  0.31595405 -0.06425068
## 1       15 7.064806e-02 -0.30066160 -0.4465488299 -0.28213686 -0.18236398
## 2       27 3.558055e-03 -0.35722206 -0.3615584758 -0.22988140 -0.21182214
## 85      10 3.217023e-02 -0.23207463 -0.3358309887 -0.25825559  0.16391727
## 98      32 5.057855e-03  0.22689875  0.3377847507  0.22234644  0.27866964
## 19      12 5.013396e-05 -0.18898817  0.4156505570  0.29305919 -0.24773329
## 71      10 1.889639e-01 -0.25408954 -0.4501505504 -0.21859914 -0.16813268
## 84      31 4.529513e-08 -0.32027263  0.2387141404  0.27098177  0.29731677
## 57      13 6.595289e-03  0.21895127 -0.0751458257  0.14695741 -0.14717007
## 89      76 5.961908e-07 -0.14976399 -0.3422642552 -0.20733214 -0.35867562
## 43      21 2.640814e-02  0.14873191  0.3963707174  0.32814999  0.08579801
## 46      22 5.722468e-02 -0.20008800 -0.3224181360 -0.28683486 -0.08787834
## 82      10 5.575015e-02 -0.29128782 -0.0023298287 -0.06988499  0.42576633
## 54      10 4.666946e-02 -0.24912385 -0.1821511427 -0.31915692  0.27954983
## 40      15 1.051726e-02  0.24794444  0.0589513183  0.22138837  0.05673283
## 87      16 3.092912e-03 -0.14094208 -0.0343776231 -0.22960796  0.32823532
## 92     105 9.708187e-23 -0.25220808 -0.1580459282 -0.27002201  0.33858456
## 5       53 5.627380e-05  0.15105913  0.3359061756  0.32790952  0.07710500
## 76      89 2.650472e-11 -0.21689179 -0.2118662376 -0.03522678 -0.22265899
## 36     206 4.170258e-47  0.12367886 -0.0108086711  0.16617896  0.36390564
## 72      16 5.863127e-02 -0.37469140 -0.1368130647 -0.28717351 -0.09701649
## 86      37 1.712248e-05 -0.16592126  0.1617507187  0.13640687  0.39045718
## 64      16 3.601604e-04 -0.15831605 -0.3624031008  0.15385992  0.02277440
## 38      11 1.913586e-01  0.08991285 -0.2069664958 -0.07971710 -0.23454707
## 49      11 1.828408e-01  0.40768630  0.0322745672  0.21764690 -0.13258959
## 27      12 2.721941e-01  0.39948331  0.1945747149  0.16500469  0.03116618
## 8       59 7.163944e-04 -0.22822063 -0.2218904889 -0.23578359 -0.05646139
## 70      14 1.511665e-01  0.08494552 -0.2541524139 -0.10741616 -0.26682653
## 20      18 1.777221e-02  0.20800070  0.0254034094 -0.05350627 -0.20431913
## 18      43 9.366571e-08 -0.16962050  0.3526361418 -0.07752858  0.19855401
## 60      16 9.843833e-03  0.09910877 -0.1123537254  0.21398064  0.11850096
## 73      75 2.380393e-05 -0.07028358 -0.3028992110 -0.14352910 -0.16656433
## 48     178 5.547639e-12  0.16721781  0.1733405141  0.16964050  0.31870383
## 28      19 7.898736e-02  0.22796621 -0.0008109162  0.22188434 -0.01480442
##          s.de24        p.de0        p.de3        p.de6       p.de12
## 74 -0.285116236 5.042743e-04 5.050075e-08 5.241224e-03 2.161645e-04
## 69 -0.222017789 5.730745e-05 2.220954e-02 2.692623e-04 7.009807e-02
## 34 -0.455417332 6.967360e-06 7.282744e-14 1.586812e-04 2.756012e-04
## 96  0.233134676 5.205250e-01 8.753049e-05 1.965302e-03 2.015246e-03
## 26  0.296663944 1.452967e-02 7.093153e-02 5.902174e-04 2.315380e-02
## 95  0.248746810 7.439837e-01 1.428843e-04 7.142449e-02 4.430008e-04
## 99  0.192477449 1.345954e-01 5.042951e-06 1.931037e-03 5.726138e-05
## 63 -0.392296296 4.356569e-02 1.344856e-03 5.080964e-02 4.248007e-03
## 77 -0.357460255 1.233756e-01 9.355576e-03 4.897879e-03 1.806803e-01
## 42 -0.116082160 5.027699e-01 7.318331e-05 8.419676e-05 1.926621e-02
## 53  0.186646802 6.104996e-02 3.731821e-02 8.750059e-01 4.309414e-03
## 32  0.259868832 7.439724e-03 1.324941e-04 5.755053e-03 2.677906e-19
## 37  0.263288711 9.272207e-10 3.144213e-01 2.248643e-02 5.111782e-01
## 93 -0.212280962 1.560307e-02 6.022348e-02 4.531545e-02 7.345014e-01
## 44 -0.121011667 3.246737e-01 3.893922e-02 8.638088e-04 4.396144e-01
## 83  0.111535071 1.610048e-01 5.925678e-01 5.388965e-01 7.960064e-05
## 55 -0.185833251 2.613006e-04 5.025312e-01 3.411697e-02 6.665981e-01
## 1  -0.190204404 4.378642e-02 2.748243e-03 5.850457e-02 2.213942e-01
## 2  -0.277947941 1.313254e-03 1.145630e-03 3.868371e-02 5.676748e-02
## 85 -0.412498149 2.038146e-01 6.592525e-02 1.573258e-01 3.694287e-01
## 98  0.286393734 2.632474e-02 9.422357e-04 2.949445e-02 6.365787e-03
## 19 -0.051545968 2.569870e-01 1.265967e-02 7.878271e-02 1.373033e-01
## 71 -0.004787995 1.641315e-01 1.370130e-02 2.313187e-01 3.572456e-01
## 84  0.130313782 2.025914e-03 2.142993e-02 9.019531e-03 4.168261e-03
## 57 -0.488265585 1.716695e-01 6.389929e-01 3.589292e-01 3.582342e-01
## 89 -0.081367436 2.399897e-02 2.472736e-07 1.778319e-03 6.396894e-08
## 43  0.117232037 2.380564e-01 1.662831e-03 9.232648e-03 4.961185e-01
## 46 -0.263837067 1.042493e-01 8.845321e-03 1.985882e-02 4.755365e-01
## 82 -0.167155338 1.107106e-01 9.898216e-01 7.019730e-01 1.972936e-02
## 54  0.126659756 1.725304e-01 3.185765e-01 8.052964e-02 1.258362e-01
## 40 -0.411935091 9.639244e-02 6.926307e-01 1.376717e-01 7.036398e-01
## 87 -0.319421814 3.290441e-01 8.118294e-01 1.118136e-01 2.301485e-02
## 92 -0.071666619 7.989577e-06 5.144246e-03 1.743915e-06 2.022580e-09
## 5   0.176719729 5.713734e-02 2.329160e-05 3.627846e-05 3.315799e-01
## 76 -0.370901215 4.053449e-04 5.510905e-04 5.657566e-01 2.827108e-04
## 36 -0.321188257 2.219970e-03 7.892273e-01 3.944612e-05 2.080979e-19
## 72  0.143336790 9.459948e-03 3.434113e-01 4.672490e-02 5.016811e-01
## 86  0.190239172 8.073267e-02 8.865244e-02 1.510675e-01 3.946863e-05
## 64 -0.246358564 2.729206e-01 1.207820e-02 2.866492e-01 8.746824e-01
## 38 -0.358726968 6.056172e-01 2.346141e-01 6.471043e-01 1.779958e-01
## 49  0.003078470 1.921374e-02 8.529611e-01 2.113383e-01 4.464056e-01
## 27  0.080416646 1.656550e-02 2.431901e-01 3.223276e-01 8.517153e-01
## 8  -0.265606052 2.429291e-03 3.199452e-03 1.733163e-03 4.532337e-01
## 70 -0.273167119 5.821220e-01 9.966488e-02 4.865184e-01 8.388190e-02
## 20  0.371756676 1.265727e-01 8.519885e-01 6.943261e-01 1.334293e-01
## 18  0.144538805 5.429906e-02 6.295032e-05 3.790896e-01 2.427499e-02
## 60  0.349738310 4.925011e-01 4.365337e-01 1.383762e-01 4.118566e-01
## 73 -0.241888350 2.926844e-01 5.734593e-06 3.163919e-02 1.263568e-02
## 48  0.048550444 1.192789e-04 6.648168e-05 9.486289e-05 2.188337e-13
## 28  0.293016244 8.538574e-02 9.951177e-01 9.406000e-02 9.110521e-01
##          p.de24    s.dist         SD p.adjustMANOVA
## 74 3.624025e-02 1.1196799 0.17102215   9.071425e-06
## 69 2.023107e-01 1.0956217 0.20580627   5.111457e-03
## 34 3.107682e-06 1.0935351 0.15197581   3.787788e-12
## 96 1.309636e-01 0.9413672 0.20623317   4.716017e-03
## 26 8.843751e-02 0.9392775 0.12019715   2.433369e-02
## 95 1.204529e-01 0.9141183 0.23181684   4.716017e-03
## 99 1.181006e-01 0.8820549 0.17210166   7.787394e-04
## 63 3.071191e-03 0.7851411 0.07615613   1.119165e-02
## 77 1.652763e-02 0.7393655 0.09810809   5.981807e-02
## 42 3.249398e-01 0.7276356 0.23443253   3.193108e-05
## 53 2.837819e-01 0.7214402 0.31965967   8.508933e-03
## 32 3.832708e-05 0.7109627 0.26232709   1.349110e-22
## 37 7.885769e-03 0.7087591 0.34264657   4.746587e-12
## 93 2.450846e-01 0.7037717 0.27171055   6.681682e-02
## 44 4.679522e-01 0.6965284 0.18708135   5.140862e-02
## 83 4.699624e-01 0.6677553 0.29706417   1.456969e-03
## 55 2.127303e-01 0.6669723 0.29323979   4.269465e-03
## 1  2.021661e-01 0.6624491 0.10696412   1.076024e-01
## 2  1.242272e-02 0.6582562 0.06979243   1.036022e-02
## 85 2.389640e-02 0.6560188 0.22324119   6.124718e-02
## 98 5.047962e-03 0.6121255 0.04760880   1.353318e-02
## 19 7.571956e-01 0.5986605 0.29524372   2.757368e-04
## 71 9.790844e-01 0.5858960 0.16057410   2.492698e-01
## 84 2.092298e-01 0.5816950 0.25603612   4.484218e-07
## 57 2.300627e-03 0.5790038 0.27905442   1.718246e-02
## 89 2.200998e-01 0.5637637 0.12060422   4.918574e-06
## 43 3.523862e-01 0.5549937 0.13814948   5.446678e-02
## 46 3.217353e-02 0.5509950 0.09217525   9.602107e-02
## 82 3.600475e-01 0.5467685 0.27237628   9.515975e-02
## 54 4.879743e-01 0.5397163 0.25864835   8.400502e-02
## 40 5.737610e-03 0.5356059 0.26499159   2.479069e-02
## 87 2.695681e-02 0.5324801 0.25107456   9.278736e-03
## 92 2.045822e-01 0.5303536 0.24854675   2.402776e-21
## 5  2.605209e-02 0.5294823 0.11393833   2.932161e-04
## 76 1.451946e-09 0.5294478 0.11899026   3.279960e-10
## 36 1.870570e-15 0.5278427 0.25392479   4.128556e-45
## 72 3.208926e-01 0.5210928 0.19895308   9.674159e-02
## 86 4.523750e-02 0.5108304 0.19955773   1.130084e-04
## 64 8.798864e-02 0.4912067 0.20709864   1.456969e-03
## 38 3.938410e-02 0.4908886 0.17039475   2.492698e-01
## 49 9.858953e-01 0.4818811 0.21001917   2.446114e-01
## 27 6.295725e-01 0.4817789 0.14186809   3.326817e-01
## 8  4.173911e-04 0.4802587 0.08284152   2.727809e-03
## 70 7.678163e-02 0.4787109 0.15475103   2.107814e-01
## 20 6.319768e-03 0.4761532 0.22505194   3.909886e-02
## 18 1.010351e-01 0.4684541 0.21166272   8.429914e-07
## 60 1.542994e-02 0.4523196 0.16962273   2.433369e-02
## 73 2.923693e-04 0.4511563 0.08993896   1.472868e-04
## 48 2.640216e-01 0.4367103 0.09582682   7.845946e-11
## 28 2.702310e-02 0.4327581 0.14274161   1.167127e-01
z <- res$enrichment_result[1:n,4:8]
rownames(z) <- head(res$enrichment_result$set,n)
colnames(z) <- gsub("s.","",colnames(z))
heatmap.2(as.matrix(z),margins = c(5,28),cexRow = 0.5, trace="none", main="multidimensional enrichment analysis")

capture.output(
    mitch_plots(res,"timecourse_mitch_eff_plots.pdf")
    , file = "/dev/null", append = FALSE,
    type = c("output", "message"), split = FALSE)

unlink("timecourse_mitch_eff_report.html")
capture.output(
    mitch_report(res,"timecourse_mitch_eff_report.html")
    , file = "/dev/null", append = FALSE,
    type = c("output", "message"), split = FALSE)
## Dataset saved as " /tmp/Rtmpx51yyy/timecourse_mitch_eff_report.RData ".
## 
## 
## processing file: mitch.Rmd
## output file: /mnt/mziemann/projects/tohidul_rnaseq/mitch.knit.md
## 
## Output created: /tmp/Rtmpx51yyy/mitch_report.html

References

Ziemann M, Kaspi A, El-Osta A. Digital expression explorer 2: a repository of uniformly processed RNA sequencing data. Gigascience. 2019;8(4):giz022. doi:10.1093/gigascience/giz022

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. doi:10.1186/s13059-014-0550-8

Kaspi A, Ziemann M. mitch: multi-contrast pathway enrichment for multi-omics and single-cell profiling data. BMC Genomics. 2020;21(1):447. Published 2020 Jun 29. doi:10.1186/s12864-020-06856-9

Session information

For reproducibility.

sessionInfo()
## R version 4.0.2 (2020-06-22)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 18.04.4 LTS
## 
## Matrix products: default
## BLAS:   /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.7.1
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.7.1
## 
## locale:
##  [1] LC_CTYPE=en_AU.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_AU.UTF-8        LC_COLLATE=en_AU.UTF-8    
##  [5] LC_MONETARY=en_AU.UTF-8    LC_MESSAGES=en_AU.UTF-8   
##  [7] LC_PAPER=en_AU.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_AU.UTF-8 LC_IDENTIFICATION=C       
## 
## attached base packages:
## [1] parallel  stats4    stats     graphics  grDevices utils     datasets 
## [8] methods   base     
## 
## other attached packages:
##  [1] pkgload_1.1.0               GGally_2.0.0               
##  [3] ggplot2_3.3.2               beeswarm_0.2.3             
##  [5] gtools_3.8.2                tibble_3.0.3               
##  [7] dplyr_1.0.1                 echarts4r_0.3.2            
##  [9] RColorBrewer_1.1-2          edgeR_3.30.3               
## [11] limma_3.44.3                mitch_1.0.8                
## [13] DESeq2_1.28.1               SummarizedExperiment_1.18.2
## [15] DelayedArray_0.14.1         matrixStats_0.56.0         
## [17] Biobase_2.48.0              GenomicRanges_1.40.0       
## [19] GenomeInfoDb_1.24.2         IRanges_2.22.2             
## [21] S4Vectors_0.26.1            BiocGenerics_0.34.0        
## [23] gplots_3.0.4                reshape2_1.4.4             
## [25] getDEE2_0.99.30            
## 
## loaded via a namespace (and not attached):
##  [1] bitops_1.0-6           bit64_4.0.2            rprojroot_1.3-2       
##  [4] backports_1.1.8        tools_4.0.2            R6_2.4.1              
##  [7] KernSmooth_2.23-17     DBI_1.1.0              colorspace_1.4-1      
## [10] withr_2.2.0            htm2txt_2.1.1          tidyselect_1.1.0      
## [13] gridExtra_2.3          bit_4.0.4              compiler_4.0.2        
## [16] desc_1.2.0             labeling_0.3           caTools_1.18.0        
## [19] scales_1.1.1           genefilter_1.70.0      stringr_1.4.0         
## [22] digest_0.6.25          rmarkdown_2.3          XVector_0.28.0        
## [25] pkgconfig_2.0.3        htmltools_0.5.0        highr_0.8             
## [28] fastmap_1.0.1          htmlwidgets_1.5.1      rlang_0.4.7           
## [31] RSQLite_2.2.0          shiny_1.5.0            generics_0.0.2        
## [34] farver_2.0.3           jsonlite_1.7.0         BiocParallel_1.22.0   
## [37] RCurl_1.98-1.2         magrittr_1.5           GenomeInfoDbData_1.2.3
## [40] Matrix_1.2-18          Rcpp_1.0.5             munsell_0.5.0         
## [43] lifecycle_0.2.0        stringi_1.4.6          yaml_2.2.1            
## [46] MASS_7.3-51.6          zlibbioc_1.34.0        plyr_1.8.6            
## [49] grid_4.0.2             blob_1.2.1             gdata_2.18.0          
## [52] promises_1.1.1         crayon_1.3.4           lattice_0.20-41       
## [55] splines_4.0.2          annotate_1.66.0        locfit_1.5-9.4        
## [58] knitr_1.29             pillar_1.4.6           geneplotter_1.66.0    
## [61] XML_3.99-0.5           glue_1.4.1             evaluate_0.14         
## [64] vctrs_0.3.2            httpuv_1.5.4           testthat_2.3.2        
## [67] gtable_0.3.0           purrr_0.3.4            assertthat_0.2.1      
## [70] reshape_0.8.8          xfun_0.16              mime_0.9              
## [73] xtable_1.8-4           later_1.1.0.1          survival_3.2-3        
## [76] pbmcapply_1.5.0        AnnotationDbi_1.50.3   memoise_1.1.0         
## [79] ellipsis_0.3.1